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ABSTRACT 
One of the main sources of uncertainty in analysing risk and return properties of a 
portfolio of fixed income securities is the stochastic evolution of the shape of the term 
structure of interest rates. We estimate a model that fits the South African term structure 
of interest rates, using a Kalman filter approach. Our model includes four latent factors 
and observable macro-economic variables (capacity utilisation, inflation and repo-rate). 
Our goal is to capture the dynamic interactions between the macro-economy and the term 
structure in such a way that the resulting model can be used to generate interest rate 
scenario trees that are suitable for fixed income portfolio optimisation. An important 
input into our scenario generator is the investor’s view on the future evolution of the 
repo-rate. 

In this paper we will provide details on our model and report on the results of the 
estimation and scenario generation. 
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1. INTRODUCTION 

One of the main sources of uncertainty in analysing the risk and return properties 
of a portfolio of fixed income securities is the stochastic evolution of the shape of the 
term structure of interest rates (or yield curve). Inspired by the research of Diebold et al. 
(2006) we estimate a model that fits the South African term structure of interest rates, 



 2

using a Kalman filter approach. Diebold et al. (2006) characterise the yield curve using 
three latent factors, namely level, slope and curvature. To model the dynamic interactions 
between the macro-economy and the yield curve, they also included observable macro-
economic variables, specifically real activity, inflation and a monetary policy instrument. 
Other examples where a latent factor model approach is used to characterise the yield 
curve and that explicitly include macro-economic factors can be found in Ang & Piazzesi 
(2003), Hördahl et al. (2002) and Wu (2002). These examples, however, only consider a 
unidirectional linkage between the macro-economy and the yield curve. Kozicki & 
Tinsley (2001), Dewachter & Lyrio (2002) and Rudebusch & Wu (2003) allow for 
implicit feedback. 

To capture the dynamics of the yield curve, Diebold et al. (2006) do not use a no-
arbitrage factor representation such as the typically used affine no-arbitrage models (see 
for example Duffee, 2002 and Brousseau, 2002) or canonical affine no-arbitrage models 
(see for example Rudebusch & Wu, 2003). Instead of using a no-arbitrage representation 
Diebold et al. (2006) suggest using a three-factor term structure model based on the yield 
curve model of Nelson & Siegel (1987), as used in Diebold & Li (2006), and interpret 
these factors as level, slope and curvature. Diebold & Li (2006) proposes a two-step 
procedure to estimate the dynamics of the yield curve. The procedure firstly estimates the 
three latent factors and secondly estimates an autoregressive model for these factors. 
Diebold & Li (2006) use these models to forecast the term structure. Diebold et al. (2006) 
proposed a one-step approach by introducing an integrated state-space modelling 
approach which is preferred over the two-step Diebold-Li approach. This Kalman filter 
approach simultaneously fits the yield curve and estimates the underlying dynamics of 
these factors. The model also incorporates the estimation of the macro-economic factors 
and the link between the macro-economy and the latent factors driving the yield curve.   

In Section 2, we describe the Kalman filter state-space modelling approach for the 
basic three-factor yields-only model used by Diebold et al. (2006). This model uses only 
three latent factors of the yield curve and does not include macro-economic factors. We 
will describe the model estimation for the South African term structure and introduce a 
four-factor model based on the yield curve model of Svensson (1994). The four-factor 
model is introduced because the Nelson & Siegel (1987) is not flexible enough to get an 
acceptable fit to the South African term structure. 

In Section 3, we incorporate macro-economic variables (capacity utilisation, 
inflation and repo-rate). Our goal is to capture the dynamic interactions between the 
macro-economy and the term structure in such a way that the resulting model can be used 
to generate interest rate scenario trees that are suitable for fixed income portfolio 
optimisation. Section 4 describes our approach. An important input into our scenario 
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generator is the investor’s view on the future evolution of the repo-rate. We also discuss 
the existence of arbitrage in the scenario trees and propose a method to reduce arbitrage 
opportunities. 

We offer concluding remarks in Section 5. 
 
2. YIELDS-ONLY MODEL 
 In this section we introduce the factor model representation of the yield curve. 
Following Diebold et al. (2006), we start with yields-only model using the three factor 
representation of Nelson-Siegel and use this as a benchmark for the four factor 
representation of Svensson. By using the more flexible four-factor model, we obtain a 
better fit.  Since all the models that are described in this section are fitted using a Kalman 
filter approach, we start this section with an overview of the Kalman filter. 
 
2.1 THE KALMAN FILTER 
 The Kalman filter, introduced by Kalman (1960), is a popular technique used in 
signal processing, control engineering and other fields. The main idea is to represent a 
dynamic system in terms of states (the unobserved underlying Markov process). The state 
equation (or transition equation) describes the dynamics of this process while the 
observation equation (or measurement equation) relates the observables with the 
unobserved states. The advantage of using a state-space representation (defined below) is 
that it allows the modeller to include information on the evolution of the yield curve over 
time as well as information contained in the cross section of interest rates at each point in 
time.  
 Following Hamilton (Hamilton: Chap 13, 1994), let  denote a vector of 

variables (yields in our case) observed at date t  that can be described in terms of 
ty

tf , a 

vector of unobservable states. The state-space representation of the dynamics of y is then 
given the following system of equations: 
 1t tf Af tη−= +  [Transition equation] 

 t t ty Bx f tε= + Λ +  [Measurement equation] 

where the matrices A, B and Λ have appropriate dimensions, xt is a vector of exogenous 
variables. The disturbances ηt and εt are vector white noise: 

( )
for 

0 otherwiset

Q t
E τ

τ
ηη

=⎧′ = ⎨
⎩

, 

( )
for 

0 otherwiset

H t
E τ

τ
ε ε

=⎧′ = ⎨
⎩

, 
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where the matrices Q and Η have appropriate dimensions. The disturbances ηt and εt are 
also assumed to be uncorrelated at all lags: 

( ) 0,   for all  and .tE tτη ε τ= , 

 The Kalman filter is a sequential algorithm that calculates the best predictor of the 
unobserved states, given all previous observations. The details will be given later. 
 
2.2 FACTOR REPRESENTATION 
 The main aim of the factor model approach is to represent the term structure (a 
large set of yields with various maturities) as a function of a smaller set of unobservable 
factors. The Nelson-Siegel representation (Nelson & Siegel, 1987) produces reliable and 
reasonable estimation results and has become one of the popular approaches adopted by 
central banks for yield curve estimation (Bank of International Settlements, 1999). The 
Nelson-Siegel model, derived from a parametric functional form for the forward rates, 
uses only four parameters to define a more parsimonious and stable representation of the 
whole term structure: 

( ) 1 2 3
1 1e ey e

λτ λτ
λττ β β β

λτ λτ

− −
−⎛ ⎞ ⎛− −

= + + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

, 

where ( )y τ  is the zero coupon yield with maturity τ  and  1β , 2β , 3β  and λ  are the 

model parameters. As demonstrated by Diebold & Li (2006), the latent factors 1β , 2β  

and 3β  of the Nelson-Siegel representation of the yield curve, can be interpreted as level, 

slope and curvature and the terms that multiply these factors are factor loadings. The 
parameter λ  determines the shape of the curve and does not have a direct economic 
interpretation.  
 Diebold & Li (2006) rewrite the representation as 

( ) 1 1
t t t t

e ey L S C e
λτ λτ

λττ
λτ λτ

− −
−⎛ ⎞ ⎛− −

= + + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

where ,  and  are the, time-varying unobserved factors,  tL tS tC 1β , 2β  and 3β .  

 Diebold et al. (2006) describe the state-space system as follow: The dynamics of 
the unobservable factors, ,  and , are modelled as a vector autoregressive process 

of the first order which forms a state-space system. The ARMA state vector dynamics 
may be of any order, but the VAR(1) assumption is maintained for transparency and 
parsimony.  The dynamics of the state vector is governed by the transition equation 

tL tS tC
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where . By fixing the parameter 1,...,t = λ  (to be specified later), the measurement 

equation, which relates a set of  yields of the yield curve, with maturities N 1,..., Nτ τ , to 

the three unobserved factors, are 
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where . The state-space system can be written in matrix notation as 1,...,t =

( ) ( )1t tf A f tμ μ η−− = − + , 

t ty f tε= Λ + . 

The white noise disturbances in the transition and measurement equations are required to 
be orthogonal to each other and to the initial state for the linear least-squares optimality 
of the Kalman filter: 

0 0
~ ,

0 0
t

t

Q
WN

H
η
ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

, 

( )0 0tE f η′ = , 

( )0 0tE f ε ′ = . 

 
Diebold et al. (2006) assume that the  matrix is non-diagonal to allow the 

shocks to the three term structure factors to be correlated. The  matrix is assumed to be 
diagonal, which implies that the deviations of the yields of various maturities from the 
yield curve are uncorrelated. This is quite standard and the same as in no-arbitrage term 
structure models and is required for computational tractability given the large number of 
observed yields. 

Q
H
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Figure 1. Yields curves, August 1999 to April 2008 
 
2.3 THREE FACTOR MODEL ESTIMATION  

We use the Perfect Fit Bond Curves, one of the five BEASSA Zero Coupon Yield 
Curve series of yield curves (see Bond exchange of South Africa, 2003a), with maturities 
1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 
192, 204, 216 and 228 months. The curves are derived from government bond data and 
the technical specifications are described in Bond exchange of South Africa (2003b). We 
use end-of-month data from August 1999 through to April 2008. Figure 1 provides a 
three dimensional plot of our yield curve data.  
 The variation in the level of the yield curve is visually apparent as is the variation 
in the slope and curvature of the yield curve. Descriptive statistics for the yields (mean, 
standard deviation, minimum, maximum and autocorrelations for one, twelfth and thirty 
months) are provided in Table 1. It is clear that the typical yield curve is humped shape 
with a positive hump at 120 months. The short rates are less volatile than the long rates 
but less persistent when comparing the twelfth month autocorrelation. This is the 
opposite compared to the U.S. term structure (See Diebold & Li, 2006).  The level is 
persistent and varies moderately relative to its mean and the slope and the curvature are 
the least persistent. The slope is highly variable relative to its mean as is the curvature. In 
Figure 2 the median yield curve together with point-wise interquartile ranges are  
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Table 1. Descriptive statistics, yield curve 
Maturity Mean Std. dev. Minimum Maximum ( )ˆ 1ρ  ( )ˆ 12ρ  ( )ˆ 30ρ  

1 8.990 1.741 6.542 12.437 0.968 0.280 -0.231
2 8.988 1.713 6.554 12.383 0.969 0.277 -0.234
3 8.982 1.686 6.565 12.329 0.969 0.276 -0.233
6 8.957 1.605 6.604 12.172 0.967 0.288 -0.208
9 8.935 1.539 6.574 12.092 0.964 0.308 -0.161

12 8.930 1.493 6.531 12.058 0.959 0.328 -0.109
15 8.940 1.467 6.592 12.024 0.955 0.347 -0.057
18 8.960 1.455 6.708 11.989 0.952 0.365 -0.010
21 8.987 1.454 6.754 11.954 0.950 0.382 0.032
24 9.016 1.462 6.771 11.918 0.948 0.399 0.069
36 9.142 1.539 6.841 12.107 0.947 0.455 0.161
48 9.262 1.628 6.912 12.615 0.950 0.492 0.197
60 9.363 1.698 6.980 12.959 0.953 0.515 0.210
72 9.442 1.746 7.026 13.190 0.954 0.528 0.215
84 9.500 1.779 7.055 13.350 0.955 0.537 0.215
96 9.537 1.803 7.072 13.466 0.956 0.543 0.213
108 9.554 1.823 7.076 13.553 0.956 0.548 0.207
120 9.551 1.841 7.069 13.621 0.956 0.553 0.201
132 9.530 1.859 7.051 13.676 0.956 0.558 0.194
144 9.493 1.879 7.023 13.721 0.957 0.563 0.185
156 9.444 1.900 6.987 13.759 0.957 0.569 0.176
168 9.388 1.923 6.945 13.792 0.957 0.575 0.167
180 9.328 1.946 6.898 13.820 0.958 0.580 0.156
192 9.265 1.970 6.847 13.845 0.958 0.585 0.145
204 9.202 1.995 6.794 13.866 0.959 0.590 0.134
216 9.138 2.021 6.698 13.886 0.959 0.594 0.123
228 9.076 2.047 6.581 13.903 0.960 0.598 0.112

Level 9.203 1.626 6.818 12.821 0.962 0.606 0.170
Slope -0.093 2.015 -3.760 4.079 0.962 0.176 -0.377

Curvature -0.026 1.102 -2.453 2.847 0.868 -0.017 -0.047

 
displayed. The humped shaped pattern, with short rates less volatile than long rate, is 
apparent. 

As in Diebold et al. (2006), the yields-only model forms a state-space system, 
with a VAR(1) transition equation summarising the dynamics of the vector of latent 
variables, and a linear measurement equation relating the observed yields to the state 
vector as described above. In the entire model there are 46 parameters that need to be 
estimated by  
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Figure 2. Median yield curve with point-wise interquartile range 
 
the numerical optimisation of the relevant likelihood function. Let ψ  be the vector of all 
parameters that need to be estimated. These parameters are the nine parameters contained 
in transition matrix A , the three parameters contained in the mean state vector μ , and 
the one parameter  λ  contained in the measurement matrix Λ . 

Furthermore the transition disturbance covariance matrix Q  contains six 
parameters, and the measurement disturbance covariance matrix  contains 27 
parameters (one variance for each of the 27 yields). Given that the matrices 

H
A  and Λ  are 

affine and assuming that the distributions of tη , tε  and 0f  are normal, the model is 

referred to as a linear Gaussian state-space model (Lemke, 2006).  
 It follows by assumption that the transition density ( )1 |t tp f f+  and the 

measurement density ( |t t )p y f  are jointly normal. This implies that the prediction and 

filtering densities are normal, 

( )1 | 1 |
ˆ| Y ,t t t t t tf N f− − Σ∼ 1− , 

( )| |
ˆ| Y ,t t t t t tf N f Σ∼ , 

( )1 | 1ˆ| Y ,t t t t ty N y− −∼ F , 

where { }1Y , ,t y y= … t  is taken to be the sequence of observations available for 

estimation and | 1t̂ tf − , t̂f ,  and | 1ˆt ty − | 1t t−Σ , |t tΣ ,  the sequences of conditional means, and 

covariance matrices respectively. These quantities can be obtained by employing the 
Kalman filter for a given set of parameters 

tF

ψ .  
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The Kalman filter algorithm can be described as follows (see Lemke, 2006): 

Step 1: Set 0|0 0f̂ f= , 0|0 0Σ = Σ  and set 0t = . 

Step 2:  and  are given values, but  has not been observed yet. Compute  1| 1t̂ tf − − 1| 1t t− −Σ ty

( ) ( )| 1 1| 1
ˆ ˆ
t t t tf A fμ μ− − −− = − , 

| 1 1| 1t t t tA A Q− − − ′Σ = Σ + , 

| 1 | 1
ˆˆt t t ty f− −= Λ  and 

| 1t t tF H− ′= ΛΣ Λ + . 

Step 3:  has been observed. Compute ty
1

| 1t t t tK F −
− ′= Σ Λ , 

( )| | 1 |
ˆ ˆ ˆt t t t t t t tf f K y y 1− −= + − , 

| | 1 |t t t t t t tK 1− −Σ = Σ − ΛΣ . 

Step 4: If t , set , and go to Step 2; else, stop. T< :t t= +1
 
 Hence the Kalman filter delivers the sequence of means and covariance matrices 
for the conditional distributions of interest for a given set of parameters ψ . The Kalman 

filter is initialised by setting 0f  and 0Σ  to the unconditional mean and unconditional 

covariance matrix of the state vector respectively. Under the normality assumption, the 
distribution of  conditional on ty 1Yt−  is the -dimensional normal distribution with 

mean  and covariance matrix . The conditional density of  given  and 

N

| 1ˆt ty − tF ty 1Yt− ψ  

can be written as (see Lemke, 2006) 

( ) ( ) ( ) (
1/ 2 11

1 |2 ˆ ˆ| Y ; 2 expN
t t t t t t t t t tp y F y y F y yψ π

−
−

− − )1 | 1−
⎡ ⎤′⎡ ⎤= ⋅ − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Accordingly, the log-likelihood function becomes  

( ) 1
1 1

1 1ln log 2 log
2 2 2

T T
t tt t

NTL Fψ π −
= =

′= − − −∑ ∑ t tv F v

)

, 

where  is the vector of prediction errors.  ( | 1ˆt t t tv y y −= −

 For a given set of parameters ψ , the Kalman filter is used to compute the 

prediction errors  and their covariance matrix , after which the log-likelihood 

function is computed. The parameters are estimated by maximising the log-likelihood 
function, using either the Nelder-Mead Simplex or Newton-Raphson algorithms.  

tv tF
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Table 2. Three-factor yields-only model estimates (Bold entries denote parameters 
estimates significant at 5 percent, standard errors appear in parentheses) 

 
1tL −  1tS −  1tC −  μ  

tL  0.956 
(0.026) 

0.004 
(0.022) 

-0.010 
(0.019) 

8.353 
(1.154) 

tS  0.085 
(0.031) 

0.958 
(0.027) 

0.129 
(0.023) 

0.383 
(1.153) 

tC  -0.154 
(0.073) 

-0.120 
(0.063) 

0.856 
(0.053) 

-0.701 
(0.758) 

 
Table 3. Estimated Q  matrix (Bold entries denote parameters estimates significant at 5 
percent, standard errors appear in parentheses) 

 
tL  tS  tC  

tL  0.143 
(0.020) 

-0.136 
(0.022) 

-0.046 
(0.040) 

tS   0.214 
(0.030) 

0.061 
(0.049) 

tC    1.136 
(0.158) 

 
For more details on Kalman filtering see Harvey (1989) and Lemke (2006).   Non-
negativity constraints are imposed on all the variances.  As in Diebold et al. (2006), we 
obtain starting parameters using the two-step Diebold-Li method and initialising the 
variances to 1.0. As in Diebold & Li  (2006) we initialise the value of λ  at 0.0609 to 
maximise the loading on the curvature factor at exactly 30 months, i.e. the maturity at 
which the hump occurs in the yield curve.   

 In Table 2 and Table 3 we present the estimation results for the three-
factor yields-only model. In Table 2 the estimate of the A  matrix indicates the highly 
persistent dynamics of ,  and , with estimated own lag coefficients 0.956, 0.958 

and 0.856 respectively. Cross factor dynamics between  and ,  and , and  

and  appear to be important with statistical significant effects. The estimates indicate 

that persistence decreases in , ,and  as measured by the diagonal elements. The 

mean of the level is approximately 8 percent, the mean of the slope and the mean of the 
curvature does not seem statistical significant different from zero and appear to be 
reasonable. The largest eigenvalue of the 

tL tS tC

tS tL tS tC tC

tL

tL tS tC

A  matrix 0.96, this ensures the stationarity of 
the system. In Table 3 the estimates of the Q  matrix indicate that transitional shock  
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Table 4. Summary of statistics for predicted errors of yields 
Maturity Yields-only Yields-macro 

 3 Factor 4 Factor 3 Factor 4 Factor 
 Mean Std Mean Std Mean Std Mean Std 

1 -0.0265 0.3633 -0.0147 0.4762 0.00499 0.45207 -0.00356 0.41848 
2 0.0002 0.3484 0.0023 0.4578 0.00817 0.44751 -0.01295 0.40813 
3 0.0190 0.3460 0.0139 0.4544 0.00619 0.32912 0.03356 0.32738 
6 0.0406 0.3596 0.0246 0.4736 -0.02549 0.35777 0.04737 0.33934 
9 0.0372 0.3793 0.0209 0.5000 0.00047 0.34028 0.04164 0.33493 

12 0.0298 0.3996 0.0188 0.5231 0.01876 0.33617 0.03652 0.33680 
15 0.0248 0.4173 0.0212 0.5414 0.03973 0.34937 0.02497 0.35622 
18 0.0205 0.4332 0.0240 0.5564 0.03634 0.36995 0.01856 0.38057 
21 0.0171 0.4475 0.0264 0.5691 0.02913 0.38991 0.01649 0.40204 
24 0.0138 0.4602 0.0267 0.5796 0.02419 0.40648 0.01736 0.41974 
36 0.0066 0.4992 0.0115 0.6069 0.01982 0.42086 0.01931 0.43520 
48 0.0144 0.5202 -0.0136 0.6194 0.01649 0.43349 0.02158 0.44886 
60 0.0308 0.5285 -0.0352 0.6254 0.01308 0.44459 0.02343 0.46086 
72 0.0472 0.5309 -0.0483 0.6288 0.00570 0.47664 0.02375 0.49547 
84 0.0577 0.5323 -0.0521 0.6305 0.01297 0.49193 0.01631 0.51160 
96 0.0585 0.5350 -0.0487 0.6310 0.02864 0.49666 0.00857 0.51633 

108 0.0465 0.5398 -0.0417 0.6311 0.04441 0.49728 0.00546 0.51626 
120 0.0202 0.5469 -0.0346 0.6317 0.05450 0.49787 0.00824 0.51527 
132 -0.0202 0.5571 -0.0296 0.6330 0.05513 0.50052 0.01532 0.51502 
144 -0.0733 0.5716 -0.0276 0.6349 0.04336 0.50604 0.02373 0.51603 
156 -0.1358 0.5910 -0.0277 0.6367 0.01775 0.51479 0.03088 0.51807 
168 -0.2038 0.6157 -0.0277 0.6383 -0.02155 0.52752 0.03526 0.52059 
180 -0.2746 0.6454 -0.0268 0.6396 -0.07321 0.54507 0.03660 0.52321 
192 -0.3467 0.6794 -0.0248 0.6408 -0.13401 0.56809 0.03615 0.52592 
204 -0.4189 0.7169 -0.0217 0.6419 -0.20009 0.59659 0.03541 0.52861 
216 -0.4900 0.7572 -0.0173 0.6431 -0.26898 0.62999 0.03514 0.53130 
228 -0.5591 0.7997 -0.0112 0.6450 -0.33908 0.66765 0.03560 0.53413 

 
volatility increases as we move from   to  to  as measured by the diagonal 

elements. There is one significant covariance term between  and  in the  matrix. 

The estimate for 

tL tS tC

tL tS Q

λ  is 0.089 which implies that the loading on the curvature factor is 
maximised at a maturity of 20.15 months. This can be seen in Figure 2, where the first 
(inverted) hump occurs at around the maturity of 20 months. 

Table 4 contains the means and standard deviations of the predicted errors. The 
three-factor yields-only model fits the yield curve reasonably well in the short maturities  
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Figure 3. Estimates of the level, slope and curvature factors 
 
but less in the longer maturities, with the standard deviation also increasing for longer 
maturities.  This is similar to the yields-only model of Diebold et al. (2006). 

We use the Kalman filter fixed-interval smoothing algorithm to obtain optimal 
extractions of the latent level, slope and curvature factors. The algorithm consists of a set 
of recursions which start with the final quantities given by the Kalman filter and work 
backwards (Harvey, 1989). The equations are 

( )*
| | 1| 1|

ˆ ˆ ˆ ˆ
t T t t t t T t tf f f f+ += + Σ −  and 

( )* *
| | 1| 1|t T t t t t T t t t+ +

′Σ = Σ +Σ Σ −Σ Σ , 

where . Figure 3 plots the three estimated factors together and in Figure 4 

to Figure 6 the three factors together with various empirical proxies and related macro-
economic variables. The level factor in Figure 4 is positive in the neighbourhood of 8 
percent and displays persistence. The slope and the curvature factors vary around zero 
with positive and negative values and appear less persistent. The slope factor is more 
persistent than the curvature factor but has a lower variance. The correlation between the 
slope and curvature factors is 0.47.  

*
|t t t tA −

+′Σ = Σ Σ 1
1|t

 Figure 4 displays the estimated level factor and two linked comparison series. The 
first one is a commonly used empirical proxy for the level factor namely the average of 
the short-, medium- and long-term yields, ( ) ( ) ( )( )3 24 228 /y y y+ + 3 . The second is the 

annual percentage change in the inflation index. There is a high correlation of 0.84 
between the level factor and the empirical proxy. The correlation between the level factor 
and the inflation is 0.54. According to Diebold et al. (2006) this is consistent with the 
Fisher equation, which suggests a link between the yield curve and inflation.  
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Figure 4. Three-factor yields-only model level factor and empirical estimates 
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Figure 5. Three-factor yields-only model slope factor and empirical estimates 
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Figure 6. Three-factor yields-only model curvature factor and empirical estimates 
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Figure 7. Nelson-Siegel fit versus Svensson fit of the yield curve 
 

Figure 5 also displays the estimated slope factor and two linked comparison 
series. The first is the empirical proxy for the slope factor namely the difference between 
the short- and long-term yields, ( ) ( )3 228y y− . The second is an indicator of macro-

economic activity namely the demeaned manufacturing capacity utilisation. There is a 
high correlation of 0.97 between the slope factor and the empirical proxy. The correlation 
between the slope factor and the capacity utilisation is 0.31. Diebold et al. (2006) suggest 
that, as with the level factor, there is a connection between the yield curve and the 
cyclical dynamics of the economy. 

Furthermore, Figure 6 displays the curvature factor and the empirical proxy for 
the curvature of the yield curve, which is ( ) ( ) ( )2 24 3 228y y y− − . There is a correlation 

of 0.79 between the curvature factor and the empirical proxy. Diebold et al. (2006) report 
no reliable macro-economic links to the curvature factor.  
 
2.4 FOUR-FACTOR MODEL ESTIMATION 
 In Table 4 we have shown that the three-factor model fits the yield curve 
reasonably well in the short maturities but less in the longer maturities. We extend the 
three-factor model to a four-factor model using the Svensson representation (Svensson, 
1994) of the yield curve 

( )
1 1 2

1 2
1 2 3 4

1 1 2

1 1 1e e ey e
λ τ λ τ λ τ

eλτ λτ β β β β
λτ λτ λ τ

− − −
− −⎛ ⎞ ⎛ ⎞ ⎛− − −

= + + − + −⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

τ ⎞
⎟
⎠

. 

where ( )y τ  is the zero coupon yield with maturity τ  and  1β , 2β , 3β , 4β , 1λ  and 2λ  are 

model parameters. Figure 7 illustrates an example fit of both the Nelson-Siegel curve the 
Svensson curve on an arbitrary yield curve in our dataset. It is clearly visible that the 
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Svensson curve is more flexible and provides a better fit to the South African term 
structure than the Nelson-Siegel curve. 

We rewrite Svensson the representation as 

( )
1 1 2

1 21 2

1 1 2

1 1 1
t t t t t

e e ey L S C e C e
λτ λ τ λ τ

λ τ λτ
λτ λτ λ τ

− − −
− −⎛ ⎞ ⎛ ⎞ ⎛− − −

= + + − + −⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

τ ⎞
⎟
⎠

 

where , ,  and  are the, time-varying unobserved factors,  tL tS 1
tC 2

tC 1β , 2β , 3β  and 4β , 

respectively.  We interpret the factors  , ,  and  as level, slope, curvature 1 and 

curvature 2. The state-space system can be rewritten as 
tL tS 1

tC 2
tC

( ) ( )t tf A f tμ μ η− = − + , 

t ty f tε= Λ + , 

0 0
~ ,

0 0
t

t

Q
WN

H
η
ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

, 

where ( 1 2, , ,t t t t t )f L S C C ′= . The dimensions of A , μ , tη  and Q  are increased as 

appropriate.  is changed to be Λ
1 1 1 1 1 2

1 1 1 2

2 1 2 1 2 2
2 1 2 2

1 1 2
1 2

1 1 1 1 1 2

2 1 2 1 2 2

1 1 2

1 1 11

1 1 11

1 1 11
N N N

N N

N N N

e e ee e

e e ee e

e e ee e

τ λ τ λ τ λ
τ λ τ λ

τ λ τ λ τ λ
τ λ τ λ

τ λ τ λ τ λ
τ λ τ λ

τ λ τ λ τ λ

τ λ τ λ τ λ

τ λ τ λ τ λ

− − −
− −

− − −
− −

− − −
− −

⎛ ⎞− − −
− −⎜ ⎟

⎜ ⎟
⎜ ⎟− − −

− −⎜ ⎟
Λ = ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟− − −

− −⎜ ⎟⎜ ⎟
⎝ ⎠

# # # #
. 

    
In Table 5 and Table 6 we present the estimation results for the four-factor yields-

only model. In Table 5 the estimate of the A  matrix indicates high persistent own 
dynamics of , ,  and , with estimated own lag coefficients of 0.927, 1.024, 

0.702 and 1.103 respectively. Some cross factor dynamics seem significantly important. 
The estimates indicate the persistence in  and  decreases and an increases in  and 

, as measured by the diagonal elements. The mean of the level is approximately 6.4 

percent and is statistical significant different from zero. The mean of the slope is 2.357 
percent, the mean of the first curvature factor is -0.239 percent and the mean of the 
second curvature factor 6.293 percent,  which are not statistical significant different from 
zero. The largest eigenvalue of the 

tL tS 1
tC 2

tC

tL 1
tC tS

2
tC

A  matrix 0.95, this ensures the stationarity of the  
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Table 5. Four-factor yields-only model estimates (Bold entries denote parameters 
estimates significant at 5 percent, standard errors appear in parentheses) 

 
1tL −  1tS −  1

1tC −  2
1tC −  μ  

tL  0.927 
(0.050) 

0.031 
(0.039) 

-0.049 
(0.040) 

0.006 
(0.014) 

6.429 
(1.054) 

tS  0.080 
(0.049) 

1.024 
(0.045) 

0.112 
(0.039) 

-0.016 
(0.017) 

2.357 
(1.376) 

1
tC  -0.251 

(0.017) 
-0.193 
(0.009) 

0.702 
(0.053) 

0.071 
(0.023) 

-0.239 
(0.391) 

2
tC  0.231 

(0.061) 
-0.047 
(0.118) 

-0.134 
(0.097) 

1.103 
(0.030) 

6.293 
(4.028) 

 
Table 6. Four-factor yields-only estimated  matrix (Bold entries denote parameters 
estimates significant at 5 percent, standard errors appear in parentheses) 

Q

 
tL  tS  1

tC  2
tC  

tL  0.473 
(0.031) 

0.007 
(0.025) 

-0.006 
(0.117) 

-0.048 
(0.135) 

tS   0.630 
(0.032) 

0.151 
(0.133) 

-0.045 
(0.071) 

1
tC    1.146 

(0.152) 
-0.022 
(0.212) 

2
tC     4.371 

(0.678) 

 
system. In Table 6 the estimates indicate an increase in the transitional shock volatility as 
we move from , ,  and .  The estimate for tL tS 1

tC 2
tC 1λ  is 0.087 which implies that the 

loading on the first curvature factor is maximised at a maturity of 20.61 months and the 
estimate for 2λ  is 0.015 which implies that the loading on the second curvature factor is 
maximised at a maturity of 119.55 months. Again in Figure 2 it can be seen that the first 
hump is at about 20 months and the second hump at 120 months. 

As shown in Table 4, the four-factor yields-only model improves on the means of 
the measurement errors, especially for the long maturities.  Again we plot the estimated 
level and slope factors against empirical proxies and macro-economic factors in Figures 8 
and Figure 9. In Figure 8 we plot the estimated level factor against the empirical proxy 
and annual percentage change in the inflation index. There is a correlation of 0.68 
between the estimated level factor and the empirical proxy. The correlation between the 
estimated level and the inflation is 0.39, which again suggests that inflation is linked to 
dynamics of the yield curve. Figure 9 shows the estimated slope curve together with the  
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Figure 8. Four-factor yields-only model level factor and empirical estimates 
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Figure 9. Four-factor yields-only model slope factor and empirical estimates 
 
empirical proxy and demeaned manufacturing capacity utilisation. There is a 0.85 
correlation between the estimated slope factor and the empirical proxy, and a 0.23 
correlation between the estimated slope factor and the capacity utilisation. This also 
suggests a link between the capacity utilisation and the dynamic of the yield curve. 
 
3.  MACRO-ECONOMIC MODEL 
 In this section we relate the four unobserved factors, level, slope and the two 
curvature factors, that provide a good representation of the yield curve, to the macro-
economic variables. This can be done by extending the state-space model above. We also 
present out-of-sample forecasting results.  
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3.1 YIELDS-MACRO MODEL 
 We include the following three macro economic variables: manufacturing 
capacity utilisation ( )tCU , which represents the level of real economic activity relative 

to potential; the annual percentage change in the inflation index ( )tIF , which represent 

the inflation rate; and the repo-rate ( )tRR , which represents the monetary policy 

instrument.  According to Diebold et al. (2006) these three macro-economic variables are 
considered to be the minimum set of fundamentals needed to capture the basic macro-
economic dynamics (see also Rudebusch & Svensson, 1999 and Kozicki & Tinsley, 
2001). 
 We extend the four-factor yields-only model to incorporate the three macro-
economic variables by adding the variables to the set of state variables. The state-space 
system is rewritten as 

( )
( )

( )
( )

( )
( )

11 1 12 1

21 1 22 1

t t t t

tt t t

f A f A x

x A f A x

μ μ ν η
γν μ ν

− −

− −

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+

t

, 

t ty f ε= Λ + , 

0 0
~ 0 , 0

0 0 0

t

t

t

Q K
WN K J

H

η
γ
ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where ( )1 2, , ,t t t t tf L S C C ′=  and ( ), ,t t t tx CU IF RR ′= . Where 11A , 12A , 21A , 22A , μ , ν , 

tη , tγ , Q ,  and  have appropriate dimensions. K J Λ stays unchanged. This is consistent 

with the view that only four factors are needed to distil the information in the yield curve 
(Diebold et al., 2006). In the four-factor yields-macro model the matrix  

Q K
K J
⎛ ⎞
⎜ ⎟′⎝ ⎠

 

is assumed to be non-diagonal and  is assumed to be diagonal.  H
As previously stated it follows by assumption that the transition density 

( )1 |t tp f f+  and ( 1 |t t )p x x+  and the measurement density ( )|t tp y f  are jointly normal. 

This implies that the prediction and filtering densities are normal, 

| 1 | 1 | 1 | 1

1 | 1 | 1 | 1 |

| 1 | 1 | 1 | 1

ˆ

ˆ ,
ˆ

ff fx fy
t t t t t t t

xf xx xy
t t t t t t t t t t

yf yx yy
t t t t t t t

f f
x G N x
y y

− − − −

− − − − −

− − − −

⎛ ⎞⎛ ⎞⎛ ⎞ Σ Σ Σ
⎜ ⎟⎜ ⎟⎜ ⎟ Σ Σ Σ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟Σ Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠

∼ 1

t t

t t

, 

( )| |
ˆ| , ff

t t t t t tf G N f Σ∼ , 
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where { }1 1, , , ,t tG y y x x= … … t  is taken to be the sequence of observations available for 

estimation. These quantities can be obtained by employing the Kalman filter for a given 
set of parameters ψ .  

The Kalman filter algorithm is updated as follows: 

Step 1: Set 0|0 0f̂ f= , 0|0 0
ffΣ = Σ  and set 0t = . 

Step 2:  and  are given values, but  and 1| 1t̂ tf − − 1| 1
ff
t t− −Σ ty tx  has not been observed yet. 

Compute  

( ) ( ) ( )| 1 11 1| 1 12 1
ˆ ˆ
t t t t tf A f A xμ μ ν− − −− = − + −− , 

( ) ( ) ( )| 1 11 1| 1 12 1
ˆˆt t t t tx A f A xμ μ ν− − −− = − + −− , 

| 1 | 1
ˆˆt t t ty f− −= Λ  

| 1 11 1| 1 11
ff ff
t t t tA A− − − ′ QΣ = Σ + , 

| 1 21 1| 1 21
xx ff
t t t tA A− − − ′ JΣ = Σ + , 

| 1 | 1
yy ff
t t t t H− − ′Σ = ΛΣ Λ + , 

| 1 11 1| 1 21
fx ff
t t t tA A− − − ′ KΣ = Σ + , 

| 1 | 1
fy ff
t t t t− − ′Σ = Σ Λ and 

| 1 | 1
xy fx
t t t t− − ′Σ = Σ Λ . 

Step 3:  and ty tx  has been observed. Compute 

( )
1

| 1| 1 | 1
| | 1 | 1 | 1

| 1| 1 | 1

ˆˆ ˆ
ˆ

xx xy
t t tt t t tfx fy

t t t t t t t t yx yy
t t tt t t t

y y
f f

x x

−

−− −
− − −

−− −

−⎛ ⎞∑ ∑ ⎛ ⎞
= + ∑ ∑ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −∑ ∑ ⎝ ⎠⎝ ⎠

, 

( )
1

| 1 | 1 | 1
| | 1 | 1 | 1

| 1 | 1 | 1

xx xy fx
t t t t t tff ff fx fy

t t t t t t t t yx yy fy
t t t t t t

−

− − −
− − −

− − −

⎛ ⎞ ⎛∑ ∑ ∑
Σ = Σ − ∑ ∑ ⎜ ⎟ ⎜⎜ ⎟ ⎜∑ ∑ ∑⎝ ⎠ ⎝

⎞
⎟⎟
⎠

1

. 

Step 4: If t , set , and go to Step 2; else, stop. T< :t t= +
Accordingly, the log-likelihood function becomes  

( )
1

| 1 | 1 | 1 | 1
1 1

| 1 | 1 | 1 | 1

1 1ln log 2 log
2 2 2

xx xy xx xy
T Tt t t t t t t t

t tyx yy yx yyt t
t t t t t t t t

NTL vψ π
−

− − − −

= =
− − − −

⎛ ⎞ ⎛ ⎞∑ ∑ ∑ ∑′= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∑ ∑ ∑ ∑⎝ ⎠ ⎝ ⎠
∑ ∑ v

⎟

, 

where  is the vector of prediction errors. | 1

| 1

ˆ
ˆ

t t t
t

t t t

y y
v

x x
−

−

−⎛ ⎞
= ⎜ −⎝ ⎠
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Table 7. Four-factor yields-macro model estimates (Bold entries denote parameters 
estimates significant at 5 percent, standard errors appear in parentheses) 

 
1tL −  1tS −  1 1tC −  2 1tC −  1tCU −  1tIF −  1tRR −  μ  

tL  0.516 
(0.036) 

-0.369 
(0.034) 

0.002 
(0.033) 

-0.020 
(0.024) 

0.044 
(0.061) 

0.109 
(0.092) 

0.288 
(0.097) 

6.427 
(2.318) 

tS  0.503 
(0.114) 

1.303 
(0.084) 

0.116 
(0.040) 

0.018 
(0.028) 

-0.046 
(0.071) 

-0.018 
(0.109) 

-0.353 
(0.060) 

2.746 
(2.535) 

1tC  0.250 
(0.079) 

0.217 
(0.044) 

0.867 
(0.066) 

0.030 
(0.048) 

-0.045 
(0.116) 

-0.037 
(0.161) 

-0.303 
(0.177) 

0.785 
(1.546) 

2tC  1.622 
(0.045) 

1.534 
(0.102) 

0.098 
(0.082) 

0.907 
(0.079) 

-0.533 
(0.168) 

-0.245 
(0.303) 

-1.543 
(0.298) 

7.747 
(3.771) 

tCU  0.163 
(0.120) 

0.108 
(0.091) 

0.014 
(0.023) 

0.019 
(0.016) 

0.938 
(0.041) 

-0.086 
(0.062) 

-0.119 
(0.048) 

83.127 
(1.067) 

tIF  0.416 
(0.037) 

0.261 
(0.045) 

0.057 
(0.023) 

0.032 
(0.014) 

0.053 
(0.038) 

0.953 
(0.060) 

-0.206 
(0.075) 

6.387 
(1.427) 

tRR  0.503 
(0.062) 

0.324 
(0.060) 

0.130 
(0.019) 

0.019 
(0.012) 

-0.029 
(0.033) 

0.103 
(0.050) 

0.534 
(0.071) 

10.013 
(1.091) 

 
Table 8. Four-factor yields-macro estimated Q  matrix (Bold entries denote parameters 
estimates significant at 5 percent, standard errors appear in parentheses) 

 
tL  tS  1tC  2tC  tCU  tIF  tRR  

tL  0.525 
0.005 

-0.001 
0.036 

0.000 
0.087 

0.000 
0.112 

0.000 
0.077 

0.000 
0.019 

0.000 
0.042 

tS   0.633 
0.096 

0.000 
0.060 

0.000 
0.171 

0.000 
0.036 

0.000 
0.051 

0.000 
0.011 

1tC    1.512 
0.148 

0.000 
0.167 

0.000 
0.097 

0.000 
0.198 

0.000 
0.150 

2tC     4.932 
1.249 

0.000 
0.100 

0.000 
0.195 

0.000 
0.165 

tCU      0.210 
0.031 

0.000 
0.021 

-0.001 
0.011 

tIF       0.199 
0.036 

0.001 
0.010 

tRR        0.101 
0.013 
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 In Table 7 and Table 8 we present the estimation results for the four-factor yields-
macro model. The estimate of the A  matrix again indicates high persistent own dynamics 
for , , ,   and tS 1

tC 2
tC tCU tIF . Some of the cross factor dynamics are significantly 

important in most factors. The estimates also indicate an increase in the transitional shock 
volatility as we move from , ,  and  all being statistical significant different 

from zero, and a decrease in the transitional shock volatility as we move from , 
tL tS 1

tC 2
tC

tCU tIF  

and  tRR , all being statistical significant different from zero. There is a small change in 

the mean of the level, slope two curvature factors and appear to be reasonable.  The 
largest eigenvalue of the A  matrix 0.96, this ensures the stationarity of the system. None 
of the covariance terms in the Q  matrix are significant.  

As shown in Table 4, the four-factor yields-macro model improves on the means 
and standard deviations of the measurement errors. We also provide the means and 
standard deviations of the measurement errors for the three-factor yields-macro model, 
again the four-factor yields-macro model estimates the yield curve better than the three- 
factor yields-macro model. The estimates for the level, slope and two curvature factors of 
the four-factor yields-macro model are very similar to those of the four-factor yields-only 
model. 

 
3.2 OUT-OF-SAMPLE TESTING 
 For scenario generation it is not only important to capture the dynamics of the 
yield curve well in-sample but it is also important to forecast the dynamics of the yield 
curve well out-of-sample. For this reason we estimate the four-factor yields-macro model 
on truncated date sets. Using the estimated parameters we forecast the yield curve 
recursively for one, two, three and four years ahead over the period of April 2003 through 
to April 2008, using monthly intervals. Diebold & Li (2006) model and forecast the 
Nielson-Siegel factors as univariate AR(1) processes for one, six and twelve month and 
outperforms other methods on all maturities. Thus we model and forecast the Svensson 
factors as univariate AR(1) processes in order to compare their model against our four-
factor yields-macro model. 

In Table 9 to Table 12 we present the out-of-sample forecasting results for 
maturities 3, 12, 60, 120 and 288 months. We define the forecast errors at time t  to be h+

( ) ( )ˆt h t hy yτ τ+ +− . We report the mean and standard deviation of the forecast errors. The 

four-factor yields-macro model outperforms the AR(1) model. The standard deviations 
for the AR(1) model are also larger than that of the four-factor yields-macro model. In 
particular the four year ahead forecast of the four-factor yields-macro model is better than 
that for the AR(1) model. 
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Table 9. One year out-of -sample forecasting results 
Maturity Four-Factor Svensson - AR(1) Four-Factor with repo-rate 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
3 -1.053 1.562 -1.338 2.213 -0.395 1.164 

12 -0.686 1.103 -1.281 1.909 -0.021 0.742 
36 -0.706 0.605 -1.666 1.417 -0.046 0.408 
60 -0.929 0.593 -2.036 1.166 -0.276 0.573 

120 -1.009 0.741 -2.277 0.972 -0.364 0.837 
180 -0.932 0.649 -2.292 0.969 -0.291 0.752 
228 -0.854 0.524 -2.274 1.022 -0.217 0.621 

 
Table 10. Two year out-of -sample forecasting results  
Maturity Four-Factor Svensson - AR(1) Four-Factor with repo-rate 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
3 -0.881 2.004 -1.585 2.273 -0.178 1.564 

12 -0.578 1.547 -1.576 1.951 0.164 1.235 
36 -0.822 1.089 -2.124 1.763 -0.074 0.815 
60 -1.195 1.000 -2.611 1.853 -0.459 0.638 

120 -1.406 0.984 -2.947 1.951 -0.688 0.639 
180 -1.289 0.954 -2.895 1.935 -0.592 0.622 
228 -1.141 0.950 -2.784 1.900 -0.459 0.646 

 
Table 11. Three year out-of -sample forecasting results  
Maturity Four-Factor Svensson - AR(1) Four-Factor with repo-rate 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
3 -0.472 1.892 -1.235 2.013 0.120 1.539 

12 -0.195 1.343 -1.290 1.720 0.417 1.134 
36 -0.645 1.144 -2.061 2.233 -0.056 0.668 
60 -1.173 1.460 -2.703 2.835 -0.605 0.827 

120 -1.506 1.710 -3.166 3.284 -0.967 1.095 
180 -1.394 1.638 -3.107 3.234 -0.882 1.040 
228 -1.218 1.515 -2.954 3.088 -0.725 0.936 

 
Table 12. Four year out-of -sample forecasting results  
Maturity Four-Factor Svensson - AR(1) Four-Factor with repo-rate 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
3 0.067 1.258 -0.511 1.376 0.451 1.381 

12 0.067 0.817 -0.887 1.682 0.469 1.069 
36 -0.617 1.247 -1.907 3.382 -0.230 0.630 
60 -1.212 2.220 -2.620 4.627 -0.842 1.555 

120 -1.671 3.011 -3.212 5.663 -1.323 2.379 
180 -1.573 2.860 -3.152 5.564 -1.243 2.260 
228 -1.420 2.611 -3.004 5.308 -1.104 2.033 
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Figure 10. Quantile-quantile plots for maturities 3, 60 and 228 months 
 
 Also in Table 9 to Table 12 we present out-of-sample forecasting results where 
the repo-rate was included in the forecasting. As can be seen the forecasting error 
improves, especially in the long rates. The reasoning behind the inclusion of the repo-rate 
as input for the forecasting is that practitioners and long term investors usually have 
reasonably good forecasts or views on the future movements of the monetary policy 
instrument. By including this view a better forecast can be made.  
 In Figure 10 we present the quantile-quantile plots for maturities 3, 60 and 228 
months. We set the quantiles of the empirical distribution against the quantiles obtained 
by averaging over a set of scenarios generated by the four-factor yields-macro model.  
The four-factor yields-macro model better reproduce the empirical distribution in the 
long rates than in the short rates.  
 
4. SCENARIO GENERATION 
 In the next section we describe the scenario generation algorithm that we use to 
generate yield curve scenario trees for fixed income portfolio optimisation problems. We 
use the four-factor yields-macro model to generate yield curve scenarios. We discuss the 
existence of arbitrage in the scenario trees and propose a method to reduce arbitrage 
opportunities. We also demonstrate that the scenarios are stable by using back-testing. 
 
4.1 YIELD CURVE SCENARIO GENERATION 
 We describe a procedure based on the parallel simulation and randomised 
clustering approach of Gülpinar et al. (2004) to generate a scenario tree which is the input  
for financial optimisation problems. The basic data structure is the scenario tree node, 
which contains a cluster of yield curve scenarios, one of which is designated as the 
centroid. The final tree consists of the centroids of each node, and their branch 
probabilities. Gülpinar et al. (2004) introduced a randomised clustering algorithm. This 
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differs from the approach proposed by Dupacova et al. (2000) which determines clusters 
that are optimal by some measure. Our approach is to group the scenarios into equal 
groups rather than using a clustering approach as these approaches may need a very large 
number of scenarios to be generated at the root node to ensure sufficient scenarios at the 
leave nodes.  

The specific scenario tree structure that we are interested in is a yield curve 
scenario tree. A T-period scenario tree structure is represented as a tree-string which is a 
string of integers specifying for each stage 1,2, ,s T= …  the number of branches (or 
branching factor) for each node in that stage (see Dempster et al., 2006). This gives rise 
to balanced scenario trees, in which each sub tree in the same period has the same 
number of branches. Let sk  denote the branching factor for stage s, then Figure 11 gives 

an example of a scenario tree with a (3,2) tree-string, i.e. k1 = 3 and k2 = 2. Figure 12 
illustrates the methods of scenario simulation, namely parallel and sequential. We use the 
parallel method for simulation as this method will produce more realistic extreme events 
in the scenario tree (Gülpinar et al., 2004).  

The main steps of our algorithm can be outlined as follow: 
Step 1: At  create a root node group containing  scenarios. Generate all the 
scenarios using Monte Carlo simulation and the four-factor yields-macro model. Each 
scenario is equally likely and consists of T sequential yield curves (in total T×N yield 
curves are generated). 

0s = N

Step 2: Set  and for each group in the previous stage, calculate the mean 
scenario and calculate the relative position (defined below) of each scenario with respect 
to the average scenario. 

:s s= +1

Step 3: For each group, sort the scenarios in descending distance order and group them 
into sk  equal sized groups.  

Step 4: For each new group, find the scenario closest (in absolute value) to its centre, and 

designate it as the centroid. Assign a probability of ( ) 11

1

s
ii

k
−−

=∏  to each centroid. 

Step 5: If s T< , go to Step 2, else stop. 
As a measure of relative position we calculate the “distance” between the 

discounting factors of the yield curve and that of the average by: 

( )( ) ( )( )
1 1

1 1 M
D

y y
τ ττ τ τ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

∑ , 



 25

 
Figure 11. Graphic representation of scenarios 
 

 
Figure 12. Two methods of simulating scenarios 
 
where ( )y τ  is the zero rate with maturity τ  and ( )My τ  the average zero rate with 

maturity τ . Note that the relative distance D can be negative and positive, which means 
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that a yield curve can be positioned to the “left” or to the “right” of the average yield 
curve. Chueh (2002) discusses several other distance methods for interest rate sampling. 
Our relative distance method relates closely to the relative present value distance method 
in Chueh (2002). It is necessary to represent each group of scenarios with a single point, 
which becomes the data in the scenario tree. Gülpinar et al. (2004) argue that to prevent 
the scenario tree from containing scenarios that are not consistent with the simulation 
parameters, the centroid should not be taken to be the centre of the group, but rather the 
simulated scenario closest to the centre. We use the mean of the group as the notion of 
the centre, other notions of the centre that can be used is the median and the mode.  
 
4.2 ARBITRAGE 
 Filipović (1999) and other researcher such as Diebold et al. (2005) showed that 
the Nelson-Siegel family of yield curve models does not impose absence of arbitrage, 
although these models estimates and forecasts the yield curve better than arbitrage-free 
models (Duffee, 2002 noted that the canonical affine arbitrage-free models demonstrate 
disappointing out-of-sample performance). In light of this, the scenarios generated are not 
arbitrage free. Klaassen (2002) shows that arbitrage opportunities can be detected ex post 
by checking for solutions to a set of linear constraints or be excluded by including non-
linear constraints in the scenario generation process. Christensen et al. (2007) derives a 
class of arbitrage-free affine dynamic term structure models that approximate the Nelson-
Siegel yield curve specification. Christensen et al. (2008) extends these models to include 
the Svensson extension of the Nelson-Siegel yield curves.  
 We propose a method to reduce the presence of arbitrage ex post, without 
extending our models to the class of arbitrage-free models. We reduce the presence of 
arbitrage ex post as to excluding it, by means of including non-linear constraints during 
the scenario generation process. This approach has no additional effect on the 
computational difficulty of the model estimation process and the data requirements. As 
the scenario generation process is a discrete approximation of the continuous evolution of 
the term structure, extending the models to a class of arbitrage-free models will not 
ensure the exclusion of arbitrage in the generated scenarios.   
 Klaassen (2002) proposes linear constraints for two types of arbitrage. Ingersoll 
(1987) distinguishes these two types of arbitrage. The first type is an opportunity to 
construct a zero-investment portfolio that has nonnegative payoffs in all states of the 
world, and a strictly positive payoff in at least one state. The second type is an 
opportunity to construct a negative investment portfolio (i.e. providing an immediate 
positive cash flow) that generates a nonnegative payoff in all future states of the world. 
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Following the notation of Klaassen (2002), let , 1
n

k tr +  be the return on asset class 

 between time t  and ( 1,...,k k K= ) 1t +  if state ( )1,...,n n N= of the world materialises at 

time . Klaassen (2002) mentions a useful result, that if the set of equations 1t +

( ), 11
1 1N n

n k tn
v r +=

+ =∑  for all 1,...,k K= , 

has a strictly positive solution  for all nv ( )1,...,n n N= , then no arbitrage opportunities of 

the first or second type exist (also see Ingersoll, 1987). Taking , 1
n
trτ +  to be the return on a 

zero-coupon bond with maturity k τ= , then  
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is the price at time t of a zero-coupon bond with maturity τ . Thus if the set of equations 
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has strictly positive solution  for all nv ( )1,...,n n N= , then no arbitrage opportunities of 

the first or second type exist in our yield curve scenarios.  
 The class of arbitrage-free affine dynamic term structure models that Christensen 
et al. (2007) and Christensen et al. (2008) derives, for the Nelson-Siegel family of yield 
curves, differs only in the inclusion of a additional yield-adjustment term which depends 
only on the maturity of the zero-coupon bond. As this term is dependent on the maturity 
of the bond, it can be seen as a shift in the slope of the yield curve. Now let  

( )1ty

n
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=  for all ( )1,...,n n N= , 

then, if we can find yield curve shifts ( )1tc τ+  such that 
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no arbitrage opportunities exists in the yield curve scenarios. Thus, if the present value of 
the expected price of a zero-coupon bond with maturity τ  equals the current value of a 
zero-coupon bond with maturity τ , for all maturities, no arbitrage opportunities exists in 
the yield curve scenarios (this is consistent with no-arbitrage literature).    
 Given the small size of branching factors of the scenario trees generated it may 
not be possible to find realistic solutions to the yield curve shifts ( )1tc τ+ . Thus to 
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eliminate most of the arbitrage opportunities in the scenario trees we propose the 
following algorithm: 
Step 1: At the root node create a group of  scenarios. Generate all the scenarios using 
Monte Carlo simulation and the four-factor yields-macro model (as for the scenario tree). 
Each scenario is equally likely and consists of T sequential yield curves.  

N

Step 2: At each branching time of the scenario tree calculate the average of the  
generated scenarios (at the root node the current yield curve is used).  

N

Step 3: Then for each average yield curves and the corresponding one-period ahead 
scenarios solve  

( ) ( )( ) ( )

( )
1 1( 1) 1

11

1 tn
t t

t

y
y cN

yn

ee
N e

τ τ
τ τ τ+ +

−
− − − +

−=
=∑  

for all maturities, to obtain the yield curve shifts ( )1tc τ+ .  

Step 4: Add the amount ( )1tc τ+  to the original scenario tree yield curves.  

 The described method removes most of the arbitrage opportunities in the scenario 
tree with a few opportunities left in sub-trees. For scenario trees with a short horizon all 
opportunities may be removed. We judge this reduction of arbitrage opportunities as 
sufficient, since portfolio constraints in the optimisation problem, such as the restriction 
of short-selling and the inclusion of transaction costs, will eliminate or minimise the 
effect of the remaining arbitrage opportunities. 
 
4.3 BACK-TESTING 
 To test our scenario generation methodology we implemented the minimum 
guarantee multistage stochastic optimisation problem described in Dempster et al. 
(2006). Dempster et al. (2006) proposed an asset and liability management framework 
and give numerical results for a simple example of a closed-end guaranteed fund where 
no contributions are allowed after the initial cash outlay. They demonstrate the design of 
investment products with a guaranteed minimum rate of return focusing on the liability 
side of the product. We use our scenario generation approach to generate the input 
scenarios for the optimisation problem. The four-factor yields-macro model is fitted to 
market data up to a initial decision time   and scenario trees are generated from time t  
to some chosen horizon t . The optimal first stage/root node decision are then 
implemented at time t  and we measure the success of the portfolio implementation by its 
performance with historical data up to time 

t
T+

1t + .  This whole procedure is rolled forward 
for  trading times. At each decision time , the parameters of the four-factor yields-
macro model are re-estimated using the historical data up to and including time t .  

T t
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Figure 13. Scenario back-test results. 
 
Table 13. Tree structure for different back-tests 

Year Set 1  Set 2 Set 3 
April 03 5.5.5.5.5 = 3125 13.4.4.4.4=3328 200.2.2.2.2 = 3200 
April 04 8.8.8.8 = 4096 15.6.6.6 = 3240 400.2.2.2 = 3200 
April 05 15.15.15 = 3375 30.10.10 = 3000 400.3.3 = 3600 
April 06 56.56 = 3136 160.20 = 3200 800.4 = 3200 
April 07 3125 3328 3200 

  
Table 14. Portfolio allocation for different scenario sets 

Top40 Y5 Y7 Y10 Y17 Y19 
0.1644 0.9104 0 0 0 0 
0.1529 0.9230 0 0 0 0 
0.2065 0.8639 0 0 0 0 
0.2073 0.8631 0 0 0 0 
0.0197 1.0699 0 0 0 0 
0.2088 0.8615 0 0 0 0 

 
We back-test over a period of five years, from April 2003 through to April 2008, 

and use different tree structures with approximately the same number of scenarios. The 
tree structures are described in Table 13. Bonds with 5, 7, 10, 15 and 19 year maturities 
as well as the FTSE/JSE Top 40 index are included in the portfolio. Scenarios for the Top 
40 index are generated along with the yield curve by modelling the index with respect to 
the three macro-economic variables. We minimise the expected average shortfall for a 
9% annual guarantee with transaction costs.  
 Figure 13 illustrates back-testing results for all three scenario sets. The results are 
consistent with those in Dempster et al. (2006). The model performs well staying above 
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the guarantee at all times although the system involves the inclusion of truncation cost 
which puts downward pressure on the portfolio wealth. 

In Table 14 we present the first stage optimal portfolio allocations for several 
different sets of scenario. These sets were all generated with a tree-string of 5.5.5.5.5 
from the same data. The back-testing experiments on different scenario sets yield 
relatively the same first stage portfolio allocations, indicating the stability of the scenario 
generation. 
 
5. CONCLUSION 
 This paper considers the estimation and characterisation of the South African term 
structure with respect to macro-economic variables and its use in scenario generation for 
fixed income portfolios. We have estimated a yield curve model that incorporates four 
yield curve factors (level, slope and two curvature factors) and macro-economic variables 
(real activity, inflation and the stance of monetary policy). The estimated model fits the 
term structure reasonably well in-sample as shown in the results. The model also 
performs reasonably well in out-of-sample forecasting. We have shown that better 
performance can be realised by including the investors expected view on the repo-rate. 
 We also proposed a parallel simulation approach for yield curve scenario tree 
generation. The procedure is tested and the performance is measured by out-of-sample 
back-testing in terms of the value of a fixed income portfolio optimization problem 
described in the literature. The results demonstrate a reasonably sound way to generate 
stable yield curve scenario trees. We also discuss the existence of arbitrage in the 
scenario trees and propose a method to reduce arbitrage opportunities.   
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