
A STOCHASTIC PROGRAMMING APPROACH TO INTEGRATED ASSET 
AND LIABILITY MANAGEMENT OF INSURANCE PRODUCTS WITH 

GUARANTEES 
 

H Raubenheimer and MF Kruger 
 

Presented at the 2008 ASSA Convention 
 

ABSTRACT 
In recent years insurance products have become more complex by providing investors 
with various guarantees and bonus options. This increase in complexity has provided an 
impetus for the investigation into integrated asset and liability management frameworks 
that could realistically address dynamic portfolio allocation in a risk-controlled way. 

We propose a multi-stage dynamic stochastic programming model for the 
integrated asset and liability management of insurance products with guarantees that 
minimises the down-side risk of these products. We investigate with-profits guarantee 
funds by including regular bonus payments while keeping the optimisation problem 
linear. 

The uncertainty is represented in terms of arbitrage-free scenario trees using a 
four-factor term structure model that includes macro economic factors (inflation, capacity 
utilisation and repo-rates). We construct scenario trees with path dependent intermediate 
discrete yield curve outcomes suitable for the pricing of fixed income securities. The 
main focus of the paper is the formulation and implementation of a multi-stage stochastic 
programming model. The model is back-tested on real market data over a period of five 
years. 
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1. INTRODUCTION 
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In recent years multi-stage dynamic stochastic programming models has become a 
popular tool for integrated asset and liability modelling. In contrast to the usual mean-
variance (Markowitz, 1952) approach with a myopic view of managing investment risk 
over a single period, dynamic stochastic optimisation provides the asset manager with an 
integrated way to model both assets and liabilities in a flexible manner that takes into 
account multi-period dynamic asset allocation and the valuation of liabilities under future 
market conditions. Using this approach the rebalancing of the asset portfolio is modelled 
explicitly. Examples of the use of dynamic stochastic programming models in asset and 
liability management can be found in Kouwenberg (2001) and Mulvey, Pauling & Madey 
(2003). Dempster et al. (2003) show that the dynamic stochastic programming model will 
automatically hedge the current portfolio allocation against future uncertainties in asset 
returns and costs of liabilities over the analysis horizon. These models are also flexible 
enough to take into account multi-period horizons, portfolio constraints such as no short-
selling, transaction costs and the investor’s level of risk aversion and utility. 

 In recent years insurance products have become more complex by providing 
investors with various guarantees and bonus options. This increase in complexity has 
provided an impetus for the investigation into integrated asset and liability management 
frameworks that could realistically address dynamic portfolio allocation in a risk-
controlled way. Examples of the use of dynamic portfolio optimisation models for asset 
and liability management in the insurance industry are the Yasuda-Kasai model by 
Cariño & Ziemba (1998), the Towers Perrin model by Mulvey & Thorlacius (1998) and 
the CALM model of Consigli & Dempster (1998). More recent contributions specifically 
in the area of insurance products with minimum guarantees using dynamic stochastic 
programming as an asset and liability management tool is Dempster et al. (2006) and  
Consiglio et al. (2006). 

Dempster et al. (2006) proposed an asset and liability management framework 
and gave numerical results for a simple example of a closed-end guaranteed fund where 
no contributions are allowed after the initial cash outlay. They demonstrated the design of 
investment products with a guaranteed minimum rate of return focusing on the liability 
side of the product. Through back-testing they show that the proposed stochastic 
optimisation framework addresses the risk created by the guarantee in a reasonable way. 

Consiglio et al. (2006) study the same type of problem by structuring a portfolio 
for with-profit guarantee funds in the United Kingdom. The optimisation problem results 
in a non-linear optimisation problem. They demonstrated how the model can be used to 
analyse the alternatives to different bonus policies and reserving methods. Consilglio et 
al. (2001) investigates the asset and liability management of minimum guarantee products 
for the Italian Industry. 
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Inspired by the research of Dempster et al. (2006) and Consiglio et al. (2006), we 
propose a multi-stage dynamic stochastic programming model for the integrated asset and 
liability management of insurance products with guarantees that minimises the down-side 
risk of these products. As proposed in Dempster et al. (2006), our model also allows for 
portfolio rebalancing decisions over a multi-period horizon, as well as for flexible risk 
management decisions, such as the reinvestment of coupons at intermediate time steps.  
We investigate with-profits guarantee funds as in Consiglio et al. (2006), by including 
regular bonus payments. Once these bonuses have been declared, the bonus becomes 
guaranteed. To keep the optimisation problem linear, we change the way bonuses are 
declared. We keep the problem linear, for two reasons. The first is that, by keeping the 
problem linear, we can model the rebalancing of the portfolio at future decision times. By 
doing so the dynamic stochastic programming model automatically hedge the first stage 
portfolio allocation against projected future uncertainties in asset returns (see Dempster et 
al., 2003 and Dempster et al., 2006). The second reason is that the model is flexible 
enough to take into account portfolio constraints such as the prohibition of short-selling, 
transaction costs and coupon payments. 

We represent the uncertainty in terms of scenario trees by using a four-factor term 
structure model that includes macro economic factors (inflation, capacity utilisation and 
repo-rates). We construct scenario trees with path dependent intermediate discrete yield 
curve outcomes suitable for the pricing of fixed income securities. 
  In this paper we will discuss the formulation and implementation of the multi-
stage stochastic programming model. The model is back-tested on real market data over a 
period of five years. 
 
2. SCENARIO OPTIMISATION FRAMEWORK 
 In this section we propose a linear multi-stage dynamic stochastic programming 
model for the integrated asset and liability management of insurance products with 
guarantees that minimises the down-side risk of these products. 
 
2.1 MODEL FEATURES 
 As in Consiglio et al. (2006) we investigate the optimal asset allocation of with-
profits guarantee funds, by including regular bonus payments. Once these bonuses have 
been declared, the bonus becomes guaranteed. We also consider a proprietary company 
operating a fund on a 90/10 basis, i.e. the policyholder benefits in 90% of the asset share 
and the share holders 10%. It is assumed that no policyholder contributions are allowed 
after the initial upfront premium. The time horizon of the fund is T  years and the 
minimum guaranteed rate of return is  on the initial wealth. We use two assets classes, g
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Figure 1. Graphic representation of a scenarios tree 
 
namely, (semi-annual) coupon bearing bonds and equity indices.  

We simulate the future yield curves and index movements and construct a 
scenario tree. A scenario tree is a discrete approximation of the joint distribution of 
random factors (yield curve and stock indices). We represent the scenario tree in terms of 
stages (nodes)  where v

ts 1 2
12 120, , , ,1, , 2, ,t T= … … … 1,2, , tv S and = … . The stages at time 

 are denoted by t { }| 1, 2, ,v
t t ts v SΣ = = … . To enforce non-anticipativity, i.e. to prevent 

foresight of uncertain future events, we order the stages in pairs ( ) ( )( )1
1,v t v t

t ts s +
+  where the 

dependence of the index  on  is explicitly indicated. The order of the stages indicates 

that stage  at time  can be reached from stage 

v t
( )1
1

v t
ts +
+ 1t + ( )v t

ts  at time t . ( )1
1

v t
ts +
+  is the 

successor stage and ( )v t
ts  the predecessor stage.  That is using the superscript “+” to 

denote the successor stages, and superscript “-” to denote the predecessors, we have 
( ) ( )1

1
v t v t
t ts s+

+= +
t and . Each stage  has an associated probability ( ) ( )1

1
v t v t
ts s+ −
+ = v

ts s
tp  such that   

. 1
t

s
ts

p
∈∑

=∑
Certain times  correspond to the annual decision times at which 

the fund will trade to rebalance its portfolio. We represent the branching of the tree 
structure with a tree-string, which is a string of integers specifying for each decision time 

0,1, 2, , 1dt = … T −
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dt  the number of branches for each node in stage dΣ . This specification gives rise to a 

balanced scenario tree where each sub tree in the same period has the same number of 
branches. Figure 1 gives an example of a scenario tree with a (3,2) tree-string, giving a 
total of 6 scenarios.  
 
2.2 MODEL VARIABLES AND PARAMETERS 
 The variables and parameters for the model are as follow: 
 
Time sets 

{ }1 2
12 120, , , ,totalT = … T  : set of all times considered in the stochastic program; 

{ }0,1,2, , 1dT = … T −  : set of decision times; 

\i total dT T T=  : set of intermediate times; 

{ }31
2 2 2, , ,cT T= … 1−  : set of coupon payment time between decision times; 

Note that  and . 0d iT T∩ = c iT T⊂
 

Index sets 

{ }| 1, 2, ,v
t t ts v SΣ = = …  : set of stages at period t ; 

SI  : set of stock indices; 

{ }B Bτ=  : set of government bonds with maturity τ ; 

I SI B= ∪  : set of all instruments; 
 

Parameters 

Bτ
δ  : coupon rate of a government bond with maturity τ ; 

BF
τ
 : face value of a government bond with maturity τ ; 

,
s

tr τ  : zero-rate with maturity τ  at period  at stage s ; t

g  : minimum guaranteed rate of return; 
ρ  : regulatory equity to debt ratio; 

,
s

t br  : benchmark rate at period t  at stage ; s

γ  : policyholders’ rate of participation in the profits of the firm; 
β  : target terminal bonus; 

, ,
, ,/a s b s

t i t iP P  : ask or bid price of asset i I∈  at period  at stage ; t s

/a bf f  : proportional transaction costs on ask or bid transactions; 
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s
tp  : probability of stage  at period t ; s

 
Decision variables 

{ },
s s
t t i i I

x x
∈

=  : quantities of assets bought at period t  at stage ; s

{ },
s s
t t i i I

y y
∈

=  : quantities of assets sold at period t  at stage ; s

{ },
s s
t t i i I

z z
∈

=  : quantities of assets hold at period t  at stage ; s

s
tA  : value of assets account at period  at stage s ; t
s
tL  : value of liability account at period t  at stage ; s
s
tE  : value of equity account at period  at stage ; t s

s
tc  : amount of equity provided by shareholders at period  at stage ; t s

s
tSF  : amount of shortfall at period t  at stage ; s

s
tRB  : regular bonus payment declared at period t  at stage ; s
s
TTB  : policyholders terminal bonus at period T  at stage s ; 

 
2.4 BOND PRICING 

We assume all bonds to pay semi-annual coupons of Bτ
δ and derive bid and ask 

prices by adding a spread, , to the zero-rates. Let sp ,
,
a s

t BP
τ

 denote the ask price of a coupon 

bearing bond with maturity τ  at time :  t
( )( ) ( ) ( )( )

{ }
, ,

2 2 21
2 2 2 2

, 1
, 2, 1, ,

ss
t t t m t

t t t

m t r spt r spa s
t B B B Bm

P F e F eτ

τ τ τ τ

τ

τ
δ− −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − +− − +

= + + +
= +∑ …

, for 

totalt T∈ , and  ts∈Σ , 

where the principal amount is discounted in the first term and the coupon payment stream 
in the second term. Let ,

,
b s

t BP
τ

 the bid price of the bond with maturity τ  at time : t

( )( ) ( ) ( )( )
{ }

, ,
2 2 21
2 2 2 2

, 1
, 2, 1, ,

ss
t t t m t

t t t

m t r spt r spb s
t B B B Bm

P F e F eτ

τ τ τ τ

τ

τ
δ− −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − −− − −

= + + +
= +∑ …

, for 

totalt T∈ , and  ts∈Σ . 

 
2.3 VARIABLE DYNAMICS AND CONSTRAINTS 
 The variable dynamics and constraints for the minimum guarantee problem are: 

Cash balance constraints. The cash balance constraints ensure that the amount of 
cash that is received from selling assets, coupon payments at decision times and equity 
supplied for shortfall is equal to the amount of assets bought: 
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( ),
0, 0, 01a s s s

i i ai I
P x f A

∈
+ =∑ , for { }0t∈  and ts∈Σ , 

( ) { } ( ), ,1
, , , , ,2\

1 1b s s s s a s s
t i t i b i i t i t t i t i ai I i I SI i I

P y f F y c P x fδ
∈ ∈ ∈

− + + = +∑ ∑ ∑ , for 

{ }\ 0dt T∈ , and ts∈Σ . 

Short sale constraints. The short sale constraints eliminate the possibility of short-
selling assets at each stage for each time period: 

, 0s
t ix ≥ , for all i I∈ , { }\totalt T T∈  and ts∈Σ , 

, 0s
t iy ≥ , for all i I∈ , { }\ 0totalt T∈  and ts∈Σ , 

, 0s
t iz ≥ , for all i I∈ , { }\totalt T T∈  and ts∈Σ . 

Inventory constraints. The inventory constraints give the quantity invested in each 
asset at each stage for each time period: 

0, 0,
s s

iz x= i , for  { }0t∈  and ts∈Σ , 

, , , ,
s s s
t i t i t i t iz z x y−= + − s , for i I∈ , { }\ 0totalt T∈  and ts∈Σ . 

Information constraints. As the portfolio is only rebalanced at decision times, the 
information constraints ensure that portfolio can not be changed between decision times, 

, , 0s s
t i t ix y= = , for i I∈ ,  and \it T T∈ c

ts∈Σ  

Coupon reinvestment constraints. The coupon reinvestment constraints ensure 
that the coupons that are paid at the coupon times are reinvested in the same coupon 
bearing bonds: 

( )
1

,2
, ,

, 1

s
i i t is

t i a s
t i a

F z
x

P f
δ −

=
+

, for { }\i I SI∈ , ct T∈  and ts∈Σ , 

, 0s
t iy = , for { }\i I SI∈ , for ct T∈  and ts∈Σ , 

, ,0, 0s s
t SI t SIx y= = , for ct T∈  and ts∈Σ . 

Asset account constraints. The asset account constraints determine the value of 
the asset account at each stage for each time period. The value of the asset account is 
determined after rebalancing, i.e. any equity s

tc  that has been provided by shareholders to 

fund shortfalls is taken into account by the cash balance constraints: 

0 0 0
s sA L E= + , for { }0t∈  and ts∈Σ , 

( ),
, , 1s a s s

t t i t ii I aA P z f
∈

= +∑ , for { }\totalt T T∈  and ts∈Σ , 

( ) { }1 1
12 12

, 1
, , ,2\

1s b s s s
T T i b i iT i Ti I i I SI

A P z f F zδ− −
− −∈ ∈

= − +∑ ∑ i , for Ts∈Σ . 
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Liability account constraints. The liability account constraints determine the value 
of the liability account at each stage for each time period. The liability grows at the 
guaranteed rate of return plus any regular bonus payments that are declared: 

0
s

0L L= , for { }0t∈  and ts∈Σ , 
1
12

1
12

gs s s
t ttL L e RB−

−= + , for { }\totalt T T∈  and ts∈Σ . 

Equity account constraints. The equity account constraints determine the value of 
the equity account at each stage for each time period. The equity grows at the one month 
zero-rate. The shortfall is funded by the shareholders by the infusion of additional equity: 

0 0
s sE c= , for { }0t∈  and ts∈Σ , 

1 ,12
1
12

s
t trs s s

t ttE E e c
−
−−

−= + , for { }\totalt T T∈  and ts∈Σ . 

Regular bonus constraints. The regular bonus constraints determine the amount of 
the regular bonus payment at each stage for each decision time. To determine the amount 
of the regular bonus we follow the approach described by Consiglio et al. (2006) which is 
based on that of Ross (1989) where the regular bonuses are determined by aiming for a 
target terminal bonus, i.e. the firm wishes the policyholders’ terminal benefit to be a fixed 
portion of the total benefit received. Regular bonuses are assumed to be declared at 
decision times only (i.e. annually).  

It is assumed that the asset account will grow constant at the current benchmark 
rate, ,

s
t br , up to termination, giving the terminal asset value as: 

( ),
s

t br T ts bs
T tA A e −= , 

where ( ) { }1
12 12

, 1
, , 2\

1bs b s s s
t t i b i it i t ii I i I SI

A P z f F zδ−
−∈ ∈

= − +∑ ∑ 1 ,
−
−  is the value of the asset account 

before transactions. It is further assumed that the liabilities will grow at the minimum 
growth rate, , up to termination. Furthermore, it is assumed that the regular bonus 

payment, 

g
s
tRB , that is declared at time t  will stay constant through out the remainder of 

the term and will be invested at the minimum guarantee, . Thus the terminal liability 
value is: 

g

( )
( )1

12
1
12

( ) 1
1

g T t
g T tg T ts s s

T tt g

eL L e RB e
e

−
−− +−

−

⎛ ⎞−
= + +⎜ ⎟⎜ ⎟−⎝ ⎠

, 

where 
( )

( )1
1

g T t
g T t

g

e e
e

−
−⎛ ⎞−

+⎜⎜ −⎝ ⎠
⎟⎟ , is the accumulated value of a constant annuity with payment 

one cash unit from time  to T  invested at the minimum guarantee .  t g
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The terminal bonus, ( )s s s
T TTB A Lγ= − T , received by the policyholders need to 

constitute %β  of the total amount received by the policyholders: 
s
T

s s
T T

TB
TB L

β=
+

. 

Solving for s
tRB  yields  

( ) ( ) ( )( ) ( )

( )( )
( )

( )

1
, 12

1
12

,1 1

11
1

s
t b g T tr T tb s s

t ts
t g T t

g T t
g

A e L e
RB

e e
e

γ β β γ β

β γ β

− +− −
−

−
−

− − + −
=

⎛ ⎞−
+ − +⎜ ⎟−⎝ ⎠

. 

When the expected terminal asset amount exceeds the expected terminal liability amount 
regular bonuses will increase. When the expected terminal liability amount exceeds the 
expected terminal asset amount the regular bonus will be negative. As this will be unfair 
towards policyholders to declare negative bonuses the constraint is given as follow: 

( ) ( ) ( )( ) ( )

( )( )
( )

( )

1
, 12

1
12

,1 1

11
1

s
t b g T tr T tb s s

t ts
t g T t

g T t
g

A e L e
RB

e e
e

γ β β γ β

β γ β

− +− −
−

−
−

− − + −
>=

⎛ ⎞−
+ − +⎜ ⎟−⎝ ⎠

, for 

{ }( ) { }\ 0dt T T∈ ∪ , and ts∈Σ , 

where  and  for 0s
tRB >= 0s

tRB = { }( ) { }0 \it T T∈ ∪ , and ts∈Σ . By enforcing the 

regular bonus constraints the optimisation will determine the regular bonus amount s
tRB  

at each decision period. 
Consiglio et al. (2006) also consider the working party approach based on 

Chadburn (1997) which is based on work done by Institute of Actuaries Working Party. 
This approach declares regular bonuses (in return form) to reflect the benchmark return 
subject to the liability account remaining lower than the value of the reduced asset 
account, where the reduced assets accumulates at 75% of the return on assets. Consiglio 
et al. (2006) test their model with both these features and find that bonus policies based 
on aiming for a target terminal bonus outperforms bonus polices based on the working 
party approach.  

Shortfall constraints. The shortfall constraints determine the regulatory shortfall 
of the portfolio at each stage for each time period. The shortfall is calculated by using the 
value of the asset account before transaction: 

( )0 0 1 0
s sSF L Lρ+ >= + , for { }0t∈  and ts∈Σ , 

( ) 1
12

1
12

1 gs bs s
t t tSF A L eρ −+ >= + , for 
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{ }( )\ 0totalt T∈ , and ts∈Σ  

where ( ) { }1
12 12

, 1
, , 2\

1bs b s s s
t t i b i it i t ii I i I SI

A P z f F zδ−
−∈ ∈

= − +∑ ∑ 1 ,
−
−  is the value of the asset account 

before transactions and  for , and 0s
tSF >= totalt T∈ ts∈Σ . The shortfall s

tSF  at decision 

periods are funded by the shareholders equity payment, s
tc , thus s s

tc SF= t  for 

( ) { }dt T T∈ ∪  and , and zero at intermediate nodes,  ts∈Σ 0s
tc =  for { }\it T T∈ , and 

. By enforcing the shortfall constraints the optimisation will determine the amount 

of equity 
ts∈Σ

s
tc  provided by the shareholders at each decision period.  

 
2.4 OBJECTIVE FUNCTION 
 When managing a minimum guarantee fund there are two main goals to take into 
account. The first aim is the management of the investment strategies of the fund. The 
second is to maximise the shareholder value taking into account the minimum guarantee 
given to policy holders. The shareholders final wealth is given as 

 where ( ) ( )( )1 T T TA E L Eγ− − − + T ( ) ( )( )1 T T TA E Lγ− − −  is the excess amount they 

receive after the liability and the equity has been paid.  
 The objective to consider is the maximum expected excess wealth of the 
shareholders and the minimum average expected shortfall over all periods. Dempster et 
al. (2006) has shown that examining shortfall at intermediate nodes improves results.  
The objective function is given as: 

{ }

( ) ( ) ( )( )
, , ,, , :

, ,

1 1

max
T

s s s
t i t i t i

d
t

total
t

s s s
T T T

s

s
x y z s t
i I t T T s total

st T

p A L E

SFp
T

α γ

α

∈Σ

⎧ ⎫⎪ ⎪
⎨ ⎬∈ ∈ ∪ ∈Σ⎪ ⎪⎩ ⎭

∈Σ∈

⎧ ⎫− − − −
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∑

∑ ∑

s

1

, 

where the value of 0 α≤ ≤  sets the level of risk aversion and can be chosen freely. If 
the value of α  is to closer 1, more importance is given to the shortfall of the portfolio 
and less given to the expected excess wealth of the shareholders and hence a more risk-
averse portfolio allocation strategy will be taken and visa versa. In the extreme case 
where 1α =  only the shortfall will be minimised and the expected excess wealth will be 
ignored, and where 0α = , the unconstrained case, only maximises the expected excess 
wealth of the shareholders. 
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3.  RESULTS 
 In this section we discuss the performance of the model. The first two parts 
explain the scenario generation algorithm that we use to generate scenario trees which is 
the input to our mathematical optimisation problem. In the third part we present back-
tested results for the model for different levels of the guarantee rate and different levels 
of risk aversion.  
 
3.1 SCENARIO GENERATION 
 We estimate the yield curve dynamics with the four-factor yield curve 
representation of Svensson (1994). The four unobserved factors, level, slope and the two 
curvature factors, which provide a good representation of the yield curve, are linked to 
the macro-economic variables by means of a state-space model. We include the following 
three variables as measures of the state of the economy: manufacturing capacity 
utilisation, which represents the level of real economic activity relative to potential; the 
annual percentage change in the inflation index, which represent the inflation rate; and 
the repo-rate, which represents the monetary policy instrument. According to Diebold et 
al. (2006) these three macro-economic variables are considered to be the minimum set of 
fundamentals needed to capture the basic macro-economic dynamics. The model 
parameters are estimated using a Kalman filter approach. For a complete description of 
the model and the calibration of the model parameters see Raubenheimer & Kruger 
(2008).  
 Raubenheimer & Kruger (2008) also proposes a parallel simulation and clustering 
approach to create the scenario tree structure as described in Section 2.1. A T-period 
scenario tree structure is represented as a tree-string which is a string of integers 
specifying for each decision time  the number of branches (or branching factor) 

for each node in that time (see Dempster et al., 2006). This gives rise to balanced 
scenario trees, in which each sub tree in the same period has the same number of 
branches. Let tree-string  denote a typical tree-string, then the 

branching factor for decision time , is given by k

d
dt T∈

( 0 1 1, ,..., , ,d Tk k k k −= … )

dt d. Figure 1 gives an example of a 

scenario tree with a (3,2) tree-string, i.e. 0 3k =  and  1 2k = . 

The main steps of the algorithm can be outlined as follow: 
Step 1: At  create a root node group containing  scenarios. Generate all the 
scenarios using Monte Carlo simulation and the four-factor yields-macro model. Each 
scenario is equally likely and consists of T sequential yield curves (in total T×N yield 
curves are generated). 

0t = N



 12

Step 2: Set  and for each group in the previous decision time, calculate the mean 
scenario and calculate the relative position (defined below) of each scenario with respect 
to the average scenario. 

:t t= +1

Step 3: For each group, sort the scenarios in descending distance order and group them 
into  equal sized groups.  tk

Step 4: For each new group, find the scenario closest (in absolute value) to its centre, and 

designate it as the centroid. Assign a probability of ( ) 11

1

s
ii

k
−−

=∏  to each centroid. 

Step 5: If t , go to Step 2, else stop. T<
As a measure of relative position we calculate the “distance” between the 

discounting factors of the yield curve and that of the average by: 

( ) ( ), ,

1 1

1 1
n
t n M

t t

D
r r

τ ττ
τ τ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

∑ , 

where  is the zero-rate with maturity ,
n

t Tr τ  and ,
M

tr τ  the average zero-rate with maturity τ . 

Note that the relative distance n
tD  can be negative and positive, which means that a yield 

curve can be positioned to the “left” or to the “right” of the average yield curve. It is 
necessary to represent each group of scenarios with a single point, which becomes the 
data in the scenario tree. We use the mean of the group as the notion of the centre. 

The scenarios generated are not arbitrage-free (see Klaassen, 2002 and Filipović, 
1999). Raubenheimer and Kruger (2008) propose the following method to reduce the 
arbitrage opportunities: 
Step 1: At the root node create a group of  scenarios. Generate all the scenarios using 
Monte Carlo simulation and the four-factor yields-macro model (as for the scenario tree). 
Each scenario is equally likely and consists of T sequential yield curves.  

N

Step 2: At each decision time of the scenario tree calculate the average of the  
generated scenarios (at the root node the current yield curve is used).  

N

Step 3: Then for each average yield curve and the corresponding one-period ahead 
scenarios solve  

( ) ,
1, 1 1,

,1

( 1)

1

1 tn
t t

t

r
r cN

rn

ee
N e

τ
τ τ

τ
τ + − +

−
− − +

−=
=∑  

for all maturities, to obtain the yield curve shifts 1,tc τ+ .  

Step 4: Add the amount 1,tc τ+  to the original scenario tree yield curves. 
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Table 1. Tree structure used for back-testing 
Year Tree-string  

April 03 5.5.5.5.5 = 3125 
April 04 8.8.8.8 = 4096 
April 05 15.15.15 = 3375 
April 06 56.56 = 3136 
April 07 3125 

 
The method removes most of the arbitrage opportunities in the scenario tree with 

a few opportunities left in sub-trees. For scenario trees with a short horizon all 
opportunities may be removed. We judge this reduction of arbitrage opportunities as 
sufficient, since portfolio constraints in the optimisation problem, such as the restriction 
of short-selling and the inclusion of transaction costs, will eliminate or minimise the 
effect of the remaining arbitrage opportunities. 
 
3.2 DATA AND INSTRUMENTS 
 We use six different assets, namely, (semi-annual) coupon bearing bonds with 
maturities 5, 7, 10, 15 and 19 years and the FTSE/JSE Top 40 equity index. Scenarios for 
the equity index are generated along with the yield curve by modelling the FTSE\JSE 
Top 40 index with respect to the three macro-economic variables. We use the Perfect Fit 
Bond Curves, one of the five BEASSA Zero Coupon Yield Curve series of yield curves 
(see Bond exchange of South Africa, 2003a), with maturities 1, 2, 3, 6, 9, 12, 15, 18, 21, 
24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216 and 228 
months. The curves are derived from government bond data and the technical 
specifications are described in Bond exchange of South Africa (2003b). We use end-of-
month data from August 1999 through to April 2008 and a tree structure with 
approximately the same number of scenarios. The tree structure used in back-testing is 
displayed in Table 1. 
 We use the scenario generation approach to generate the input scenarios for the 
optimisation problem. The four-factor yields-macro model is fitted to market data up to 
an initial decision time   and scenario trees are generated from time t  to some chosen 
horizon . The optimal first stage/root node decisions are then implemented at time 

. The success of the portfolio strategy is measured by its performance with historical 
data up to time .  This whole procedure is rolled forward for T  trading times. At 
each decision time , the parameters of the four-factor yields-macro model are re-
estimated using the historical data up to and including time .  

t
t T+

t
1t +

t
t
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3.3 BACK-TESTED RESULTS 
 We perform back-tests over a period of five years, from April 2003 through to 
April 2008, for different levels of minimum guarantee and for different levels of risk-
aversion. For each of these back-tests, at different levels, we report the annual expected 
excess return on equity (ExROE), taken to be 

( )( )1
1

T

s s s
T T T

T ss
T

A L E
E

γ γ
∈Σ

⎛ ⎞− − +
⎜ ⎟ −
⎜ ⎟
⎝ ⎠

∑ , 

at each decision time and the annual actual excess return on equity, taken to be 

( )( )1
1T T T

T

T

A L E
E

γ γ− − +
− . 

We also report the expected cost of the guarantee taken to be the expected present value 
of the final equity deducting the regulatory equity or equity at the start 

( )( )1
12

0

,1
1

v tT t

s
sT

s T s
t tt

E E p
r∈Σ

+=

⎛ ⎞
⎜ ⎟−⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
∏

 

where ( ) ( )( 1
12

1
12

, v tv t
t ts s ) ε+

+ ∈  and the actual cost of the guarantee, taken to be 

( )1
12

0

,1
1

T
T

t tt

E E
r +=

⎛ ⎞
⎜ ⎟−
⎜ ⎟+⎝ ⎠∏

. 

 In Figure 2 we present the expected ExROE at decision times and the actual 
ExROE for different levels of the minimum guarantee. The model over estimates the 
ExROE, the expected ExROE improves as more data gets available. The actual ExROE 
decreases as the minimum guarantee increases as would be expected. In Figure 3 we 
present the expected cost of equity at the decision times and the actual cost of equity. The 
model firstly over estimates the cost of the guarantee and as more data becomes available 
the expected cost of the guarantee improves. For lower levels of minimum guarantee the 
model requires less equity, as the level increases above 9% the amount of equity required 
increases. Figure 4 presents the performance of the asset account and the liability account 
at 1%, 9% and 15% minimum guarantee. The asset level stays above the liability level 
over the entire period. Regular bonuses are paid up to a 15% minimum guarantee. The 
amounts of regular bonus payments decrease as the level of the guarantee increases.  
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Figure 2. Shareholders annual excess return on equity for different levels of minimum 
guarantee at 0.5α =  
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Figure 3. Cost of equity for different levels of minimum guarantee at 0.5α =  
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Figure 4. Asset and Liability account at 1%,  9% and 15% minimum guarantee at 0.5α =  
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Figure 5. Liabilities with different bonus options at 1% minimum guarantee 
  

Consiglio et al. (2006) specify regular bonuses in return form, which is more 
realistic than our formulation of discrete annual payments which we define in order to 
keep the problem linear. Consiglio et al. (2006) assumes that the bonus return, s

tRB , that 

is declared at time  will stay constant through out the remainder of the term giving the 
terminal liability value as: 

t

( )( ) s
tRB T ts s g T t

T tL L e e −−= . 
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Figure 6. Asset allocation for different levels of minimum guarantee at 0.5α =  
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With all other assumptions staying constant the regular bonus yields: 

( )
( ) ( )

( )( ) ( )

,,11max ln ,0
1

s
t br T tb s

ts
t g T ts

t

A e
RB

T t L e
γ β
β γ β

−

−

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟=

⎜ ⎟−⎢ ⎥+ −⎝ ⎠⎣ ⎦
. 

With back-testing performance we have also implemented the liability process proposed 
by Consiglio et al. (2006). Figure 5 shows that our discrete approximation of bonuses 
mimics the more realistic approach of Consiglio et al. (2006). Recall that our approach 
has the added advantage of keeping the overall problem linear which allows us to include 
more realistic portfolio management constraints. 

Figure 6 shows the first stage optimal asset allocation at decision times for 
different levels of the minimum guarantee. The time 0 asset allocation does not seem 
consistent with the rest of the asset allocations and is likely due to the short time series 
available for parameter estimation, but as time progresses and more data becomes 
available the allocation improves. At reasonable levels of minimum guarantee the 
portfolio is less aggressive and allocates less in the risky asset. At low levels of the 
minimum guarantee the asset account tends to be less aggressive at the begging of the 
term and more aggressive at the end, for higher levels the asset account tends to be more 
aggressive at the begging of the term. 

In Figure 7 we present the expected ExROE at decision times and the actual 
ExROE for different levels of risk-aversion at a 9% minimum guarantee. The model 
again over estimates the ExROE, the expected ExROE improves as more data becomes 
available. The ExROE decreases as the level of risk-aversion increases, as would be 
expected. The ExROE steadily decreases as the risk-aversion level moves from 0 to 1. In 
Figure 8 we present the expected cost of equity at the decision times and the actual cost 
of equity. Again the model firstly over estimates the cost of guarantee and as more data 
becomes available the expected cost of guarantee improves. The expected cost of equity 
decreases as the as the level of risk-aversion increases up to 0.4 where it is possible to 
achieve a positive ExROE. After 0.4 the cost of equity increases when a negative ExROE 
is achieved. Figure 9 presents the performance of the asset account and the liability 
account at 0 and 1 level of risk-aversion at 9% minimum guarantee. The asset level stays 
above the liability level over the entire period. At 0 level of risk-aversion the model tends 
to be more aggressive at 1 level of risk-aversion the model is more conservative.  
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Figure 7. Shareholders annual excess return on equity for different levels of risk-aversion 
at 9% minimum guarantee 
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Figure 8. Cost of equity for different levels of risk-aversion at 9% minimum guarantee 
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Figure 9. Asset and Liability account at 0 and 1 level of risk-aversion at 9% minimum 
guarantee 
 

Figure 10 shows the first stage optimal asset allocation at decision times for 
different levels of risk-aversion for at 9% minimum guarantee. The time 0 asset 
allocation again does not seem consistent with the rest of the asset allocations and, as 
mentioned previously, is likely due to the short time series available for parameter 
estimation. As the level of risk-aversion increases the portfolio is more conservative and 
allocates less in the risky asset as in lower levels of risk aversion. 
 
4. CONCLUSION 
 In this paper we have presented a multi-stage dynamic stochastic programming 
model for the integrated asset and liability management of insurance products with 
guarantees that minimises the down-side risk of these products. We included regular 
bonus payments and kept the optimisation problem linear, which enables us to model the 
rebalancing of the portfolio at future decision times. Also, by keeping the optimisation 
problem linear, the model is flexible enough to take into account portfolio constraints 
such as the prohibition of short-selling, transaction costs and coupon payments. We have 
also shown that our bonus assumption mimics those proposed by Consiglio et al. (2006). 
We have shown the model features at different levels of minimum guarantee and 
different levels of risk aversion. As Consiglio et al. (2006) have shown that the model can 
also be used for analysing the investment decision made by the insurance firm. Future 
extensions may look at the inclusion of other policy features. 
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Figure 10. Asset allocation different levels of risk-aversion at 9% minimum guarantee 
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