How a single-factor CAPM works in a multi-currency world
By RJ Thomson, Ş Şahin and TL Reddy

“A grand adventure is about to begin”

-Winnie-the-Pooh

Presented by Taryn Leigh Reddy

University of Witwatersrand

2012 CONVENTION 16 – 17 OCTOBER
AGENDA

1. Background
2. Aim
3. Necessary and sufficient condition
4. Single-factor multi-currency CAPM (SFM-CAPM)
5. Maximum likelihood estimation of betas
6. Ordinary least squares estimation of betas
7. Data
8. Results
9. Further research
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM)

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
So why did we decide to write this paper?

Showed that there is no unique single-factor CAPM in a multi-currency world. The standard CAPM assumes that all investors measure risk and return in the same currency.

Therefore when different currencies exist...

...the standard CAPM cannot describe the pricing of capital assets for both investors.

Showed that if two investors measure risk and return in different currencies...

...the standard CAPM’s assumption that all investors measure risk in the same currency breaks down.

“Why the capital-asset pricing model fails in a multi-currency world” by A.D. Wilkie

2012 CONVENTION 16 – 17 OCTOBER
Let’s assume that different domestic capital markets are independent entities…

- A market in which the price of an asset depends on where it is traded (Karolyi & Stulz, 2003).
- A domestic CAPM is appropriate only for an asset that is traded in a closed, domestic financial market (Stehle, 1977; Stulz, 1995a).

\[E\{R_i\} = R_F + \beta_i[E\{R_M\} - R_F] \]

…then the international market consists of individual segregated markets (Solnik, 1974b).
But is this the case in reality?

- A market in which assets have the same price regardless of where they are traded (Karolyi & Stulz, 2003).
- Limitations to use of domestic CAPM
- Home bias
- Development of equilibrium models

No, because we have access to international markets.
Hence, the international CAPM (ICAPM)...

- Purchasing power parity does not hold perfectly.
- Exchange-rate risk is priced by modifying the CAPM.
- Only consider the single-factor and multi-factor ICAPM.
- Both look at the world from the perspective of one currency only.

...and different versions thereof were developed.
The single-factor ICAPM or global CAPM (GCAPM)…

\[E\{R_i\} = R_F + \beta_i^{w}\left[E\{R_W\} - R_F\right] \]

…looks at the world from the perspective of one currency only—the currency in which the investor measures returns.
If strict purchasing power parity applies

AND

If returns are measured in real terms (or there is no inflation)

THEN

The GCAPM applies

THEREFORE

Risk-free rate

Mean-variance optimal portfolio

Variances and covariances of return and beta

Equal
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM)

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
In the light of Wilkie’s conclusion and the literature reviewed …

- Single-factor CAPM in a multi-currency world
- Unique CAPM
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM)

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
But I will try…

Tell us, in layman’s terms; what your breakthrough means.

Certainly. $K - \frac{4n^3 \sqrt{P}}{7} + \frac{4 \Sigma L}{5T}$

2012 CONVENTION 16 – 17 OCTOBER
A preliminary discussion is required

- C currencies
- In currency c, there is one risk-free asset and n_c risky capital assets.
- ‘asset issued in currency c’ is a risky asset issued in that currency or the risk-free asset denominated in that currency.
- ‘currency-c’ investor
- Forces of return over a unit interval.
We made further assumptions based on the CAPM

- We assume that the CAPM applies for investors in each currency. More specifically, we assume that:
 - ‘currency-c investors’ have indifference curves in mean–variance space
 - investors have homogeneous expectations
It is shown that for a single-factor CAPM to work in a multi-currency world, there is a necessary and sufficient condition…

\[\sigma_{di,M}^c + \sigma_{c,M}^c = a_c \sigma_{di,M}^1 \]

where

\[a_c = \frac{\sigma_{M,M}^c (\mu_M^1 - x_{10})}{\sigma_{1,M,M}^1 (\mu_M^c - x_{c0})} \]

holds if and only if

\[\mu_{di}^c = x_{c0} + \frac{\sigma_{di,M}^c}{\sigma_{M,M}^c} (\mu_M^c - x_{c0}) \]

holds

…that applies to the ex-ante variances and covariances of return.
Formulation of the SFM-CAPM

\[\sigma_{di,M}^c + \sigma_{c,M}^c = a_c \sigma_{di,M}^1 \]

where

\[a_c = \frac{\sigma_{M,M}^c (\mu_M^1 - x_{10})}{\sigma_{M,M}^1 (\mu_M^c - x_{c0})} \]

may also be expressed as:

\[\left(\sigma_{di,M}^c + \sigma_{c,M}^c \right) \frac{\mu_M^c - x_{c0}}{\sigma_{M,M}^c} = \sigma_{di,M}^1 \frac{\mu_M^1 - x_{10}}{\sigma_{M,M}^1} \]

In other words, for all \(c \):

\[\left(\sigma_{di,M}^c + \sigma_{c,M}^c \right) \frac{\mu_M^c - x_{c0}}{\sigma_{M,M}^c} = \kappa_{di} \]

Adjusted risk premium
This specifies the single factor for the SFM-CAPM

From

\[
\left(\sigma^c_{di,M} + \sigma^c_{c,M} \right) \frac{\mu^c_M - x^c_{c0}}{\sigma^c_{M,M}} = \kappa_{di}.
\]

\[
\beta^c_{di} = \frac{\sigma^c_{di,M}}{\sigma^c_{M,M}} \quad \beta^c_{c} = \frac{\sigma^c_{c,M}}{\sigma^c_{M,M}} \quad \text{zero}
\]

Therefore this may be expressed as:

linear constraint

\[
\beta^c_{di,c} \left(\mu^c_M - x^c_{c0} \right) = \kappa_{di}
\]

where

\[
\beta^c_{di,c} = \beta^c_{di} + \beta^c_{c}
\]
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM)

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
The derivation of the SFM-CAPM and the necessary and sufficient condition will not be discussed...
...however the SFM-CAPM developed in this paper may be specified as:

\[
E \left\{ X^c_{di} \right\} = x_{c0} + \beta_{di,c} \left(E \left\{ X^c_M \right\} - x_{c0} \right)
\]

\(E \left\{ X^c_{di} \right\} \) is the return in currency \(c \) on asset \(i \) issued in currency \(d \); \(x_{c0} \) is the return in currency \(c \) on the optimal market portfolio of a currency-\(c \) investor; \(\beta_{di,c} \) is the return on the risk-free asset denominated in currency \(c \); and \(E \left\{ X^c_M \right\} - x_{c0} \) is the return in currency \(c \) on asset \(i \) issued in currency \(d \) for \(c, d = 1, \ldots, C; i = 0,1,\ldots,n_d \).

If strict purchasing-power parity holds then the SFM-CAPM reduces to the GCAPM since the additional beta term will be zero.
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
How do we estimate the covariance and variances of return in the SFM-CAPM using the constraint?

\[
E\{X^c_{di}\} = x^c_{d0} + \beta^c_{di,c}(\mu^c_M - x^c_{c0})
\]

\[
\beta^c_{di,c} = \beta^c_{di} + \beta^c_c
\]

\[
\beta^c_{di} = \frac{\sigma^c_{di,M}}{\sigma^c_{M,M}}
\]

\[
\beta^c_c = \frac{\sigma^c_{c,M}}{\sigma^c_{M,M}}
\]

\[
\sigma^c_{di,ej} & p^c_{di}
\]

\[
\sigma^c_{di,M} + \sigma^c_{c,M} = a_c \sigma^1_{di,M}
\]

constrained maximum likelihood estimation (MLE)
But there are problems with the MLE approach.
While the MLE approach is theoretically appealing…

- Complicated
- Lengthy program
- Iterative process which may fail to converge
- Inversion of a large matrix
- Singular matrices
- Short positions
- Constrained variance not necessarily positive
- Correlation coefficients out of [-1,1] range

…it is problematic to apply in practice.
AGENDA

1. Background
2. Aim
3. Necessary and sufficient condition
4. Single-factor multi-currency CAPM (SFM-CAPM)
5. Maximum likelihood estimation of betas
6. Ordinary least squares estimation of betas
7. Data
8. Results
9. Further research
An alternative approach, using ordinary least squares, is developed.

\[
E\{X_{di}^c\} = x_{d0}^c + \beta_{di,c}^c (\mu_m^c - x_{c0})
\]

\[
\beta_{di,c}^c (\mu_m^c - x_{c0}) = \kappa_{di}
\]

\[
\frac{\partial}{\partial \kappa_{di}} \left[\sum_{c=1}^{C} \left(\beta_{di,c}^c (\mu_m^c - x_{c0}) - \kappa_{di} \right)^2 \right] = 0
\]

\[
\hat{k}_{di} = \frac{1}{C} \sum_{c=1}^{C} \left\{ \hat{\beta}_{di,c}^c \left(\hat{\mu}_m^c - x_{c0} \right) \right\} = \frac{1}{C} \sum_{c=1}^{C} \hat{k}_{di}^c
\]

\[
\beta_{di,c}^c = \hat{\beta}_{di,c}^c + \beta_c^c
\]

“original” beta

Least-squares estimates of beta
AGENDA

1. Background

2. Aim

3. Necessary and sufficient condition

4. Single-factor multi-currency CAPM (SFM-CAPM)

5. Maximum likelihood estimation of betas

6. Ordinary least squares estimation of betas

7. Data

8. Results

9. Further research
The theory is applied to two major currencies and two minor currencies…
...and the following periods and assets were used.

- Selection of periods from 1975Q2 to 2012Q1 for nominal returns and from 2003Q2 to 2012Q3 for real returns.
- Risky assets:
 - Comprehensive index of equities
 - Two conventional bonds: short (one-quarter) bond and a long-term bond
 - Two index-linked bonds: short (one-quarter) bond and a long-term bond
- Risk-free asset:
 - Nominal returns: short conventional bond
 - Real returns: short index-linked bond
- “How a single-factor CAPM works in a multi-currency world: information on the determination of data”
For example

<table>
<thead>
<tr>
<th>Data set</th>
<th>Period</th>
<th>USA e, cb ilb</th>
<th>UK e, cb ilb</th>
<th>SA e, cb ilb</th>
<th>TR e, cb ilb</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1975Q2</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1986Q1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1996Q1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2005Q3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2005Q3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2009Q4</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1975Q2</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1986Q1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2003Q2</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2005Q3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2009Q4</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2005Q3</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2003Q2</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGENDA

1. Background
2. Aim
3. Necessary and sufficient condition
4. Single-factor multi-currency CAPM (SFM-CAPM)
5. Maximum likelihood estimation of betas
6. Ordinary least squares estimation of betas
7. Data
8. Results
9. Further research
What did we compare?

\[\beta_{di,c}^c = \beta_{di}^c + \beta_c^c \]

\[\beta_{di}^c = \frac{\sigma_{di,M}^c}{\sigma_{M,M}^c} \]

unbiased sample betas

\[\hat{\beta}_{di,c}^c = \frac{\hat{\kappa}_{di}}{\hat{\mu}_M - \hat{\mu}_{c0}} \]

least-squares estimates of the betas

\[\beta_{di,c}^c = \beta_{di}^c + \beta_c^c \]

“original” betas

For nominal and real returns for each period.
What do we expect?

Least-squares estimates would be approximately equal to the sample betas

BUT

with some shift to represent effects of the constraint, additional beta and some noise

Sample betas are understated

Sample betas are overstated
Least-squares beta versus sample beta: nominal returns
Let’s look at dataset 4 a bit closer
Least-squares beta versus sample beta: real returns
AGENDA

1. Background
2. Aim
3. Necessary and sufficient condition
4. Single-factor multi-currency CAPM (SFM-CAPM)
5. Maximum likelihood estimation of betas
6. Ordinary least squares estimation of betas
7. Data
8. Results
9. Further research
Findings of this paper will lead to further research…

- Develop equilibrium models
- Ex-ante expected returns versus ex-post estimations
- Short positions
- Difficulties with MLE approach
- Recommend LSE method

Time series modelling

Our intention for the SFM-CAPM

Tests of the SFM-CAPM

• Take its place alongside other models in informing subjective assessment
Teşekkürler
Thank you